CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT

Organization Legal Name:	Centre for Environment and Development (CED)
Project Title:	Identifying Potential Areas as "Conservation Reserves" in Agasthyamalai Biosphere Reserve
Date of Report:	
Report Author and Contact Information	P.V. Karunakaran, T.R. Vinod, N. R. Chrips, S.M. Nadeer Centre for Environment and Development, Thozhuvancode, Vattiyoorkavu, Thiruvananthapuram

CEPF Region: Western Ghats region (Periyar-Agasthyamalai Corridor)

Strategic Direction: 1 (Support partnerships to safeguard globally threatened species, ensure conservation of biodiversity in priority sites and enhance connectivity in the five corridors)

Grant Amount: 18500 US \$.

Project Dates: 01.09.2009 – 31.12.2010.

Implementation Partners for this Project (please explain the level of involvement for each partner): The project was intended to develop methodologies for the identification and prioritization of Conservation Reserves in the forest areas of Agasthyamala Biosphere Reserve. During the implementation of the project Travancore Natural History Society, Thiruvananthapuram helped in data collection (birds, butterflies, amphibians, reptiles, etc). However the preliminary discussions with the department and local communities and their institutions showed that they endorse the outcome of the study and will be implementing it in due course.

Conservation Impacts

Please explain/describe how your project has contributed to the implementation of the CEPF ecosystem profile.

The project addresses the Strategic Direction (SD) 1 (Enable action by diverse communities and partnerships to ensure conservation of key biodiversity areas and enhance connectivity in the corridors) and in particular Investment Priority (IP) 1.1 (Test pilot models of community and private reserves to achieve conservation outcomes at priority sites and critical links in unprotected areas of the Anamalai and Malnad-Kodagu corridors as well as the Brahmagiri-Nagarhole critical link in the Mysore-Nilgiri corridor) of Western Ghats Ecosystem Profile. The project illustrated the above mentioned SD and IP where the emphasis has given more on the community involvement in conservation planning. The project contributed towards the identification of new protected area in the Periyar-Agastyamala Corridor, one of the priority landscapes according to CEPF ecosystem profile. It also worked towards the involvement of local communities and their institutions such as Vana Samrakshana Samithi (VSS) in conservation planning and management. The 20842.23 ha of forest areas identified as potential Conservation Reserves (new category of PAs) are biologically rich and ensures contiguity with existing PAs and conservation and protection of a wide range of globally significant species of plants and animals by involving local communities. The conservation reserves are the new category of PAs where the local community has more access to management.

Please summarize the overall results/impact of your project against the expected results detailed in the approved proposal.

The approved proposal state the following outputs, (i) criteria for identification of conservation reserves, (ii) details of biodiversity rich areas identified, delineated and mapped which can be declared as conservation reserves, (iii) details on the existing capacity and capability of the community institutions, (iv) necessary consultation with communities and (v) management strategies for the identified conservation reserves. The project has successfully developed the criteria using the biological and socio-economic strength of the forest area and the communities and their institutions (VSSs) involved in managing the forest patches. Two levels of criteria were developed, one for short-listing and the second stage criteria for prioritizing. The criteria are as exhaustive as possible and integrated into spatial format for analysis and interpretation. Many of the socio-economic criteria were developed with the help of consultation with the local people and verifying their records related to VSS meetings. The consultations with the communities also helped in developing the management strategies for the identified forest patches. The complete report has been annexed (Annexure 1).

Please provide the following information where relevant:

Hectares Protected: NIL

Species Conserved: NIL

Corridors Created: NIL

Describe the success or challenges of the project toward achieving its short-term and long-term impact objectives.

The implementation of the project was very successful with the cooperation of local communities, forest department officials, and others. The involvement of Vana Samrakshana Samithis (VSSs) and other institutions helped in many ways and the implementation of the project definitely scaled up to the real spirit of participatory research. This involvement helped in achieving the short term as well as long term objectives of the project.

Were there any unexpected impacts (positive or negative)?

Lessons Learned

Describe any lessons learned during the design and implementation of the project, as well as any related to organizational development and capacity building. Consider lessons that would inform projects designed or implemented by your organization or others, as well as lessons that might be considered by the global conservation community.

The major lesson learned include

- (i) One of the researcher developed skill for the identification of birds and amphibians since he has extensively went to the field along with amateur field biologists.
- (ii) The skill in communicating with the local people, to certain extent towards conduct of Participatory Rural Appraisal (PRA) exercise, was also developed through the execution of the project.
- (iii) Technical capacity such as using Geological Information System (GIS) and remote sensing tool in data presentation, analysis and interpretation
- (iv) One of the major lesson learned is the art of working with tribal people, and understanding their knowledge and skill in environment conservation and protection

Project Design Process: (aspects of the project design that contributed to its success/shortcomings)

The project was designed with achievable goals and objectives within the Strategic Direction and Investment Priority of the CEPF ecosystem profile. A careful reading of the past work and incorporation of available data also helped in successful completion of the project.

Project Implementation: (aspects of the project execution that contributed to its success/shortcomings)

The involvement of all stakeholders including Forest & Wildlife Department, Government of Kerala, the Participatory Forest Management Committees of different forest divisions in the Kerala-part of Agasthyamala Biosphere Reserve area, such as Vana Samrakshana Samithies (VSS), the amateur field biologists from Travancore Natural History Society (TNHS), and members from other NGOS helped in successful implementation of the project. The technical support provided by faculty members from CED also facilitated the project implementation.

Other lessons learned relevant to conservation community:

ADDITIONAL FUNDING

Provide details of any additional donors who supported this project and any funding secured for the project as a result of the CEPF grant or success of the project.

Donor	Type of Funding*	Amount	Notes
KFD	Α	\$ 300.00	Facilities, staff time
VSS	Α	\$ 500.00	Labour, meeting halls,
			man-hours equivalent
CED	Α	\$1680.00	Salary of the JRF and
			Research Associate
			during the extended
			period of the project

^{*}Additional funding should be reported using the following categories:

- **A** Project co-financing (Other donors contribute to the direct costs of this CEPF project)
- **B** Grantee and Partner leveraging (Other donors contribute to your organization or a partner organization as a direct result of successes with this CEPF project.)
- **C** Regional/Portfolio leveraging (Other donors make large investments in a region because of CEPF investment or successes related to this project.)

Sustainability/Replicability

Summarize the success or challenge in achieving planned sustainability or replicability of project components or results.

Summarize any unplanned sustainability or replicability achieved.

The sustainability of the outcome depends on the implementation of the results which are yet to takes place. However the methodology developed for the identification of the conservation

reserve through this study is as exhaustive as possible and the same can be used in similar situations with context specific modifications. The outcome of the project once implemented would help in protecting and conserving a wide array of globally significant species of plants and animals. It also recommends a community owned PA management system which is the need of the hour. The criteria and other aspects in the methodology could be effectively replicated to similar situations with suitable modifications; hence the most conspicuous aspect of the success is determined by how many similar instances will be developed by taking cue from this study.

Safeguard Policy Assessment

Provide a summary of the implementation of any required action toward the environmental and social safeguard policies within the project.

Not applicable

Performance Tracking Report Addendum

CEPF Global Targets

(Enter Grant Term)

Provide a numerical amount and brief description of the results achieved by your grant. Please respond to only those questions that are relevant to your project.

Project Results	Is this question relevant?	If yes, provide your numerical response for results achieved during the annual period.	Provide your numerica I response for project from inception of CEPF support to date.	Describe the principal results achieved from (Attach annexes if necessary)
Did your project strengthen management of a protected area guided by a sustainable management plan? Please indicate number of hectares improved.	No			
2. How many hectares of new and/or expanded protected areas did your project help establish through a legal declaration or community agreement?	No			
3. Did your project strengthen biodiversity conservation and/or natural resources management inside a key biodiversity area identified in the CEPF ecosystem profile? If so, please indicate how many hectares.	No			
4. Did your project effectively introduce or strengthen biodiversity conservation in management practices outside protected areas? If so, please indicate how many hectares.	Yes	20842.3		The area identified are outside the existing PAs; Ponmudi (57.1753 sq.km), Kallar (24.0510 sq.km), Chankili (119.6457 sq.km) and Achancovil (7.5512 sq.km)
5. If your project promotes the sustainable use of natural resources, how many local communities accrued tangible socioeconomic benefits? Please complete Table 1below.	No			

If you answered yes to question 5, please complete the following table.

Table 1. Socioeconomic Benefits to Target Communities

Please complete this table if your project provided concrete socioeconomic benefits to local communities. List the name of each community in column one. In the subsequent columns under Community Characteristics and Nature of Socioeconomic Benefit, place an X in all relevant boxes. In the bottom row, provide the totals of the Xs for each column.

Name of Community Community Characteristics Substitution Su	under Community Characteri									nt, place an	X IN 8	all relev	ant bo							eacn co	iumn.	
Sabsistence economy Indigenous ethnic peoples Subsistence economy Indigenous ethnic peoples Recent migrants Re		F		a.						Increased	Nature of Socioeconomic Benefit											
	Name of Community	Small landowners	Subsistence economy	ndigenous/ ethnic peoples	'astoralists/nomadic peoples	tecent migrants	Irban communities	communities falling below the overty rate	ther					Increased food security due to the adoption of sustainable fishing, hunting, or agricultural practices	More secure access to water resources	nproved tenure in land or oth atural resource due to titling, eduction of colonization, etc.	Reduced risk of natural disasters (fires, landslides, flooding, etc)	More secure sources of energy	Increased access to public services, such as education, health, or credit	Improved use of traditional knowledge for environmental management	More participatory decision- making due to strengthened civil society and governance.	Other
						<u> </u>		<u> </u>								===						
		-																				
		\vdash																				
		1																				
		1																				

If you marked "Other", please provide detail on the nature of the Community Characteristic and Socioeconomic Benefit:

Additional Comments/Recommendations

Kerala Forest Department- The patches identified are some of the few biodiversity rich forest areas in the Agasthyamalai Biosphere Reserve of Kerala part where the local level participatory institutions make their strong presence. Hence on account of biological and social values these locations are suitable candidate for declaring Conservation Reserves.

Kerala State Biodiversity Board – The State Biodiversity Board may be taken keen initiative in collaboration with the forest department and other agencies to monitor and the biological diversity in the area.

ATREE – The facilitator of CEPF may make the process simple, especially in accounting and reporting. Moreover it would be appropriate if the full fledged report is being collected and web-published.

CEPF- The CEPF may continue to support such multi stakeholder involved conservation initiatives and would strengthen the implementation phase of selected projects

RIT – The regional implementation team may ensure more interactions and enhanced technical support to the organizations

Information Sharing and CEPF Policy

CEPF is committed to transparent operations and to helping civil society groups share experiences, lessons learned, and results. Final project completion reports are made available on our Web site, www.cepf.net, and publicized in our newsletter and other communications.

Please include your full contact details below:

Name: Dr. P.V. Karunakaran.

Organization name: Centre for Environment and Development.

Mailing address: Dr. P.V. Karunakaran,

Program Director,

Centre for Environment and Development, Thozhuvancodu, Vattiyoorkavu, P.O., Thiruvananthapuram – 695013,

Kerala, India.

Tel: +91-471-2369720, 21, 22

Fax: +91-471-2369720

E-mail: karunakaranpv@cedindia.org

FINAL REPORT

IDENTIFYING POTENTIAL AREAS AS CONSERVATION RESERVES IN AGASTHYAMALAI BIOSPHERE RESERVE

Submitted to

CRITICAL ECOSYSTEM PARTNERSHIP FUND – ASHOKA TRUST FOR RESEARCH IN ECOLOGY AND ENVIRONMENT (CEPF-ATREE)

Ву

CENTRE FOR ENVIRONMENT AND DEVELOPMENT THIRUVANANTHAPURAM

August 2011

PROJECT TEAM

Investigators: P.V. Karunakaran

T.R. Vinod

Researchers: N.R. Chrips

S. M. Nadeer

Acknowledgement

We would like to express our gratitude to CEPF-ATREE (Critical Ecosystem Partnership Fund – Ashoka Trust for Research in Ecology and Environment) for providing the financial assistance to conduct this study in the Kerala part of Agasthyamala Biosphere Reserve.

At Forest Department of Kerala, we extend our thanks to Shri T. M. Manoharan IFS, Principal Chief Conservator of Forests (General) and Sri N. V. Trivedi Babu IFS, Additional Principal Chief Conservator of Forests and the then Chief Wildlife Warden of Kerala, for encouragement and permission to work in the reserve forest of Agasthyamala Biosphere Reserve. We express our since gratitude to Shri T. Pradeep Kumar, Divisional Forest Officer, Thiruvananthapuram Forest Division, Shri Y. M. Shajikumar, Divisional Forest Officer, Achancovil Forest Division and Range Officers for providing necessary logistic support during the field study. We thank Dr. Kalesh. S, Ramesh. M, Sanjayan. K, Jayakumar, B. and K, Charan, members of TNHS (Travancore Natural History Society) for their timely effort in the field survey for faunal group. We would like to express our immense gratitude to our Adivasi companions, especially Janardanan Kani, who helped us in a multitude of ways along with watchers of the forest department during our extended field visits to remote forest areas.

At the Centre, Dr. Babu Ambat, Executive Director is acknowledged for the encouragement and other support provided to complete this study. We are also grateful to all the colleagues of the Institute for the various supports given to us during the field study and report preparation.

CONTENTS

	Page no.
Chapter I 1. Introduction	1
1.1. Objectives	4
Chapter II 2. Review of literature	5
Chapter III 3. Study area	7
3.1. Konni Forest Division	8
3.2. Achancovil Forest Division	8
3.3. Punalur Forest Division	9
3.4. Thenmala Forest Division	10
3.5. Thiruvananthapuram Forest Division	11
Chapter IV 4. Approach and Methods	12
4.1. Development of Criteria	12
4.2. First level criteria	12
4.3. Second level criteria	13
4.4. Identification and short-listing of patches	17
4.5. Collection of primary data on biological and social para	meters 21
4.6. Analysis of data and prioritization of patches using spec	cial format 21
Chapter V 5. Results and Discussions	24
5.1. Identification of vegetation types	24
5.2. Level of community involvement and short-listing of pat	ches 26
5.3. Characterization of short-listed patches	28

	5.4. Biological value	29
	5.5. Social value	45
	5.6. Analysis and prioritization of areas as potential Conservation Reserves	50
	5.7. Management strategies	52
Cha 6.	apter VI Conclusion	57
	References	59
An	nexure 1	68
List	t of scientific name, common name, endemism and RET status of birds, butterfly, amp	hibians,
rep	tiles and evergreen trees in Ponmudi patch.	
An	nexure 2	83
List	t of scientific name, common name, endemism and RET status of birds, butterfly, amp	hibians,
rep	tiles and evergreen trees in Kallar patch.	
An	nexure 3	96
List	t of scientific name, common name, endemism and RET status of birds, butterfly, amp	hibians,
rep	tiles and evergreen trees in Chankili patch.	
An	nexure 4	109
List	t of scientific name, common name, endemism and RET status of birds, butterfly, amp	hibians,

reptiles and evergreen trees in Achancovil patch.

List of figures

	Page no.
Figure 3.1: Map of study area	7
Figure 4.1: Schematic representation of first level criteria	13
Figure 4.2: Schematic representation of second level criteria	14
Figure 5.1: Different vegetation types in Kerala part of ABR	25
Figure 5.1: Land use/ land cover Map of short-listed patches	27
Figure 5.3: Thematic map of species richness of evergreen trees	29
Figure 5.4: Thematic map of species richness of birds	30
Figure 5.5: Thematic map of species richness of butterflies	31
Figure 5.6: Thematic map of species richness of reptiles	32
Figure 5.7: Thematic map of species richness of amphibians	33
Figure 5.8: Thematic map of endemism of evergreen tree	34
Figure 5.9: Thematic map of endemism of birds	35
Figure 5.10: Thematic map of endemism of butterflies	36
Figure 5.11: Thematic map of endemism of reptiles	37
Figure 5.12: Thematic map of endemism of amphibians	38
Figure 5.13: Thematic map of critical species of evergreen trees	39
Figure 5.14: Thematic map of critical species of birds	40
Figure 5.15: Thematic map of critical species of butterflies	41
Figure 5.16: Thematic map of critical species of reptiles	42
Figure 5.17: Thematic map of critical species of amphibians	43
Figure 5.18: Thematic map of unique ecosystems	44
Figure 5.19: Thematic map of income from NTFP	45
Figure 5.20: Thematic map of income from ecotourism	46
Figure 5.21: Thematic map of dependency to water sources	47
Figure 5.22: Thematic map of community awareness	48
Figure 5.23: Thematic map of community attitude	49
Figure 5.24: Map of prioritized Conservation Reserves	50

List of tables

	Page no.
Table 4.1: Details of toposheets used	18
Table 4.2: Details of satellite images used	18
Table 4.3: List of VSS in Agasthyamalai Biosphere Reserve in Kerala	19
Table 4.4: Name of VSS and corresponding short-listed patches	21
Table 4.5: Details of weightage assessment as per composition of parameters	s 22
Table 5.1: Details of short-listed forest patches	28
Table 5.2: Priority list of potential Conservation Reserves patches	51

Chapter I

INTRODUCTION

Conservation of primary forest is highly significant to protect the biodiversity through minimizing the changes and losses of divers-genomes. For the proper survival of human beings, a holistic approach is required to be adopted as regards protection of the plant kingdom as well as the animal kingdom for the peaceful and mutually beneficial co-existence. Anthropogenic activities are producing numerous injurious effects to biota. Some organisms cannot thrive and some modify their genome to adapt this situation. Some artificial modifications are directly induced for human welfare. However, day-by-day actual genome of organisms are loosing in large scale. A well conceived procedure for conservation is highly essential in this extreme situation. The natural features that occur in protected areas and in the wider landscape - populations, species assemblages, environmental domains - obviously differ in spatial and temporal patterns. Their risk of loss points to the necessity for biodiversity conservation planning and management to address issues of vulnerability and persistence (Gaston et al., 2002). It has emerged as a key environmental concern of the day. Effective action in this context calls for an understanding of how biodiversity is distributed and maintained, in particular, within the species-rich tropical forest regions that are being rapidly depleted. We have limited information on these issues, much of it from investigations in a few localities on a few taxa (Daniels et al., 1992).

India is one of the mega-biodiversity countries in the world. The large area and the variety of bioclimatic conditions met within its different bio-geographical zones contribute to the great

diversity of the Indian flora (Singh, 2001). Biogeographical zones in India such as Trans Himalayan Region, Indian Desert, Semi-Arid, the Western Ghats, Deccan Peninsula, Gangetic Plains, North-East Region, Islands and Coasts are rich in genetic diversity of plant and animal life. Indian subcontinent forms the part of mega diversity hotspots of the world, occupying only 2.5% of the land area and accounting for 7.8% of the globally recorded

species (Myers *et al.*, 2000). Around 3000 B.C, nearly 80% of India was forested (Warner, 1982), but in 1999 it was reduced to 19.4% (FAO, 2001). From this data, we may infer that huge amount of genome was lost.

CEPF – ATREE

The Western Ghats, one of the 'biodiversity hotspots' in the world is a chain of mountains spread over an area of about 54,000km² is unique in terms of its endemic flora, fauna as well as the biological affinities it shares with forests in south-east Asia. This tropical region contains more than 30 percent of all plant, fish, herpetofauna, bird, and mammal species found in India with high rate of

endemism. People in the Western Ghats have traditionally followed conservation systems like setting up sacred groves, near natural patches of forests protected in the name of local deities and hence they represent patches of primary forests which have very high conservation importance (Gokhale, 2004: Malhotra *et al.*, 2001). Except some protected areas, a major part of the primary forests in the Western Ghats have been lost or degraded due to various anthropogenic activities and many species have been driven to critical conservation status.

Among the other regions of the Western Ghats, the southern Western Ghats is one of the richest abodes of tropical moist forests in the country. A large portion of the southern Western Ghats falls within Kerala, with a few significant spur hills extending into the neighboring Tamil Nadu, viz. Nilgiris, Palani, High-Wavies and the Kalakkad (Praveen and Nameer, 2009). The Agasthyamalai hills, situated at the Southern most tip of the Western Ghats is notable for its very rich and diverse

vegetation, with high concentration of endemics. It is considered as a divine grove, rich in myths, folk knowledge, area of biodiversity and associated cultural practices and lying as the meeting point of two southern Indian states, Kerala and Tamil Nadu. These hills form the major peaks, towards the tail end of the Western Ghats, before it abruptly falls into low hills at the Kanyakumari (Cape Camorin) district, the southern most tip of the Indian Peninsula.

This is a compact range of hills with a main range descending equally steeply to both the western and eastern sides and this is the only part of the Western Ghats where some stretch of the western slopes are also in Tamil Nadu (Nair, 1991; Manju *et al.*, 2009). Considering its immense

conservation potentials and human ecological significance, the area has been designated as 'Agasthyamalai Biosphere Reserve (ABR)' since 2001 (Manju *et al.*, 2009). The ABR constitutes around 3500 km² area in which Kerala contributes nearly 1800 km² and the rest from Tamil Nadu.

In Agasthyamalai Biosphere Reserve (ABR) of Kerala part, Shenduruny, Peppara and Neyyar Wild Life Sanctuaries are the only Protected Areas (PAs) consisting of 160.87km², 82.68km² and 100.19km² areas respectively. Total percentage area under PA network in Kerala part of ABR is 20.69% which may not be sufficient enough to ensure the persistence of

all endemic and globally threatened flora and fauna. Agasthyamalai region of southern Western Ghats is embedded in a human-dominated landscape and hence are subject to intense land-use conflicts. Only a smaller portion of the area is represented by PA system and many critical/unique ecosystems (e.g. *Myristica* swamps), habitats and species are seldom represented under the PA network and could be protected through community participation. In this regard, the formation of Conservation Reserves will enhance the protection of rich biological wealth of the reserved forests through active participation of local communities.

Conservation Reserves are the fairly new category of PA affected with the amendment of Wildlife (Protection) Act, 1972, during 2002. It states that after due consultation with local communities, any area owned by the Government, particularly the areas adjacent to the National Parks and Sanctuaries and those areas which link one protected area with another, can be considered as a

Conservation Reserve protecting landscapes, seascapes, flora and fauna and their habitat. It means, by all probability conservation reserves falls in the reserve forests (territorial divisions) where local community has considerable role to play in the management though custodial rights are vested

with forest department. Although the provision for creating conservation reserve has been given in the W (P) Act, 1972, declaration of the same has not been affected in the state even today. This may be due to the lack of proper suggestions or recommendations from the field by planners or other stakeholders. In order to assist the decision makers and conservation planners, it is decided to develop a methodology and criteria for identifying conservation reserves in the state with the following objectives. This attempt may be considered as an initial step towards an objective way of identification of conservation important areas and need to be discussed in detail before applying to the field.

1.1. Objectives

The main objective of the study is Identification of potential areas outside the present protected areas as Conservation Reserves in Agasthyamalai Biosphere Reserve of Kerala part.

The specific objectives are:

- i) To develop criteria for identification of Conservation Reserves;
- ii) To identify, delineate and map the biodiversity rich areas based on criteria which can be declared as Conservation Reserves;
- iii) To assess the capacity and capability of existing community institutions (e.g. VSS) in managing the Conservation Reserves and suggest methods to improve the skills;
- iv) To develop and suggest strategies to manage the Conservation Reserves.

Chapter II

REVIEW OF LITERATURE

Potential areas of forest for conservation in Kerala were initially proposed by Rodgers & Panwar (1988). In the revised report (Rodgers *et al.*, 2000) two National Parks (Agasthyamalai and Anamudi) and extension for Periyar National Park and 11 Wildlife Sanctuaries (Chirikala, Kurathimala, Palamala, Bharathapuzha, Agasthyamalai, Anamudi, Karimpuzha, Sabarigiri-Achenkoil, Malabar Wetalnd and Kumarakom) were suggested. Earlier, Nair (1991) suggested that while identifying areas for long-term conservation, representatives of the areas and measures for sustainable utilization of resources might be addressed. India has adopted only two categories of IUCN classification *i.e.*, II & IV correspond to National Parks and Wildlife Sanctuaries. These two categories of PAs certainly protect substantial part of country's natural ecosystems and wildlife. In an attempt to overcome the described problems and limitations to the Pas, the Wildlife (Protection) Act has been amended in 2002 and two more PAs have been legally envisaged *i.e.*, Conservation Reserves and Community Reserves. In a recent study Ramesh *et al.*, (2002) indicated that, of the 5009 km² (51%) of high conservation areas, only 22% are inside the PAs while 78% are outside and are potentially exposed to severe anthropogenic pressures.

Some of the recent studies at national and international levels used different criteria for conservation and prioritization. A thorough assessment of forest biodiversity is difficult to find out the potential area of forests for conservation. In this situation, presence of selected species or group is considered to assess the entire spectrum of biodiversity of a given area. The selected species or group may be a common, endemic, rare, threatened or endangered (Das *et al.*, 2006, Eken *et al.*, 2004) category. To evaluate the potential areas in marine ecosystem in Canada, only one species, *Katharina tunicate* was used (Salomon *et al.*, 2006).

The criteria used to select the forest areas for conservation by Phua and Minowa (2005) is categorized under biodiversity conservation (ecosystem diversity and species diversity), soil and water conservation (flood prevention function, drought prevention function and landslide prevention function) and potential threats (proximity to roads, proximity to settlements and potential commercial timber) and given specific weightage to each category.

CEPF – ATREE CED

5

In priority area identification of tropical forests in Eastern Ghats of India, Balaguru *et al.*, (2006) considered selected ecological characters such as vegetation type, species richness, endemic species and red-listed species and then applied score according to their extent. Study by Soosairaj *et al.*, (2007) in selecting priority sites in tropical forest in India, considered most of the ecological parameters and deforestation risk as criteria, at the same time community participation for forest protection are not attempted.

As part of selection of high conservation value forest areas using participatory forest management (PFM), in Indonesia, Sulisticadi et al., (2004) illustrated the importance and relationship between water source and community; but ignored ecological factors and social aspects. Studies of prioritisation of conservation areas in the Western Ghats, Das et al., (2006) considered only the ecological factors and the scale of the study was not appropriate to delineate small areas for community conservation efforts. Ramesh et al. (2002) mentioned three basic ecological principles to adopt prioritization of potential areas for conservation such as, representativity, ecological integrity and contiguity. The said study used only limited biological or ecological criteria for identifying high conservation value areas.

All the above described studies used criteria either based on ecological principles or partially on social dimensions. No comprehensive study was carried out with both social and ecological parameters. Moreover, the scale of the study is very important since the implementation of the output will be in smaller scale for effective management by local communities. In this context, a comprehensive criteria developed through interactive process would be of much relevance in delineating the conservation reserves.

Chapter III

STUDY AREA

The Agasthyamalai Biosphere Reserve (ABR) of Kerala part, lying in the extreme southern region of Indian peninsula as well as southern Western Ghats was selected for this study (Fig. 3.1). ABR of this region consists of protected areas such as Neyyar, Peppara and Shendurney wildlife sanctuaries and territorial forest divisions such as Konni, Achancovil, Punalur, Thenmala and Thiruvananthapuram. Among these forest administrative units, only territorial divisions have been considered for the study because conservation reserves will be established in such forest divisions as per the Wildlife (Protection) Act.

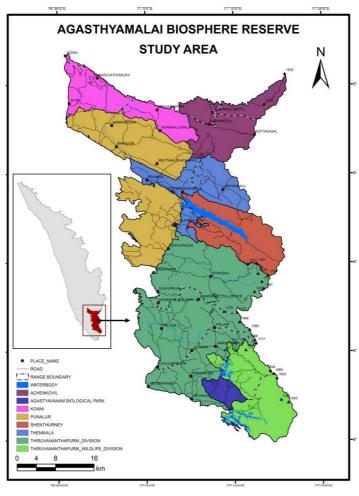


Fig. 3.1: Map of study area

3.1. Konni Forest Division

Konni Forest Division falls under Karunagapally and Pathanapuram Taluks of Kollam District and portion of Kozhenchery and Adoor Taluks of Pathanamthitta district. The division area lies between 9° 3' and 9° 15'N latitude and 77° 4' and 77° 6'E longitude. There are 320.55 km² of Reserve Forest coming under this Division. Konni Forest Division is land locked by Ranni on the north, Achancovil on the east, and Punalur Forest Division on the south. The administrative control of this Division extends up to Arabian Sea on the west. The forest tract from the part of the Western Ghats is situated mainly on its western slopes. The elevation varies from 60m (plains) to 997m at highest point namely Chelikkalkar. The forest tracts are undulating in nature, the main hillocks being Chelikkalkar (997m), Iruvullimala (817), Thunathumala (721m), Kodamala (598), Chembalakar (154m) etc. Generally, the aspect of the area dealt with is northern and southern through the presence of numerous ridges and valleys in various directions without a definite pattern gives rise to different aspects.

The soil is fine textured loam turning clayey in the valleys. Coarse soil mixed with quarts is observed in the ridges. The climate in the area is generally moderate with more daylight hours. The temperature varies from 17°C in the rainy and winter seasons and up to 35°C in the summer season. The hottest months are March and April. The average rainfall received during the last ten years is 346.4cm. The major forest types present in this division are west coast tropical evergreen forests, west coast semi- evergreen forests, southern moist mixed deciduous forests, wet reed brakes and grasslands.

3.2. Achancovil Forest Division

Achancovil Forest Division falls under Kollam and Pathanamthitta Revenue districts. Achancovil River that serves as the inter district boundary flows almost east to west, dividing the tract into two segments comprising Kallar and Kanayar Ranges and north section of Achancovil Range comes within the Aravappulam Village in Kozhenchery Taluk of Pathanamthitta district, while the southern segment, consisting of remaining portion on Achancovil Range (south section) falls within the Aryankavu Village in Pathanapuram Taluk of Kollam district. The Achancovil Forest Division lies between 09° 02′ 09″ N to 09° 12′ 30″ North latitudes and 77° 03′ 51″ to 77° 16′ 07″ East longitudes. The Forest Division is bounded on the north, west and south by Reserve forests of Konni, Punalur and Thenmala Forest Divisions respectively and on east by Tamil Nadu state. The tract dealt with is situated on the windward side of Western Ghats. Descending from the height of the Ghats, the land slopes towards west. Topographically, the

whole area is hilly, undulating and highly rugged. This continuous stretch of land, dotted with soaring cliffs and profound valleys support dense forests. The lofty main Ghats with elevation varying from 800m to 1920m, stretches along the eastern border forming an impassible barrier separating the two states because of its towering cliffs and higher slopes, which are notably and characteristically precipitous at many places. The altitude varies from 76m to 1923m. The temperature drops by 1°C for every 300m rise up to 1000m and beyond that point, the temperature fall very rapidly.

The soil condition varies from locality and vegetation types. The major type of soils are red loamy, laterite, alluvial, sandy loam and clayey. Generally, climate in the area is moderately hot and humid. The hottest months are February to May and the coldest are December and January. The temperature varies from 20°C to 34°C in the lower reaches and from 17°C to 30°C at higher altitude. The reach, being on the windward side of the Western Ghats, enjoys rains from both south-west monsoon and north-west monsoon. The average rainfall received during the last ten years is 264.53cm. The major forest types present in this Division are west coast tropical evergreen forests, southern hilltop tropical evergreen forests, west coast semi evergreen forests, southern moist mixed deciduous forests, wet reed brakes, bamboo brakes, cane brakes and grass lands.

3.3. Punalur Forest Division

Punalur Forest Division comprises of Pathanapuram and Anchal Ranges coming under Pathanapuram and Kottarakkara Taluks of Kollam district. The area of reserve forest of the Division is 275.55km². The tract lies between 8° 52' and 9° 7' N latitude and 76° 35' and 77° 6' E longitude. The forest covers outer foothills of Western Ghats with a few peaks. Except the interior areas of Achancovil Reserves in Pathanapuram Range, the Reserves are well accessible in both ranges owing to various plantation projects. Yeroor and Airanalloor Reserve Forests have rolling terrain of low rounded hills alternately with swampy valleys. Achancovil and Shalikkara Reserves exhibit a more rugged topography with hill above 600m. The major forest types present in this division are the west coast tropical evergreen forest, west coast semi evergreen forest, southern moist mixed deciduous forest and grasslands.

Major type of soils found in most of the areas is red loamy, which is rich in minerals. Alluvial soil is found in the riverbanks and valleys. In Yeroor Reserve, sandy soil is met in some parts, which is pure in nutrients and humus. Sandy loam and clayey loam are found in areas around Kumarankudy and Kaikunnam portions of Achancovil and Shaliakara Reserves. Clayey loam is

more predominant at Mambazhathara in Achancovil Reserve. Generally, the soils are well drained. The climate in the area is moderately hot and humid. The hottest months are February to May and the coldest are December and January. The temperature varies from 18 to 39°C. The tract receives both monsoons, but bulk of which is from south-west monsoon during June – August. The area receives an average rainfall of 240cm annually. The extent of natural vegetation in the division is very less owing to large scale plantation raised to support the industrial units in the area.

3.4. Thenmala Forest Division

Thenmala Forest Division is situated in the Pathanapuram and Kozhencherry Taluks of Kollam and Pathanamthitta Revenue districts respectively and lies within 76° 59' 30" and 77° 16' 30" north latitude and 8^o 44' and 9^o 44' and 9^o 14' south latitude. This division in north is surrounded by Achancovil Forest Division in the East by Tirunelveli (Tamilnadu State) in the South by Thiruvananthapuram division and Shendurney Wild Life Sanctuary and in the west by Punalur and Konni divisions. The total area of this division is 575.56 km². Kulathupuzha, Arienkavu, Achencoil, Konni Edamon Teak Plantation reserve forest make up the area of the division. In the east, there is a continuous stretch of dense forests with high and elevated cliffs and pinnacles which act as barriers seperating the states of Kerala and Tamil Nadu. The lofty Ghats casts numerous high spurs westwards which end abruptly after a few miles across forming deep valleys with preponderence of valuable tree growth. The valleys formed are (a) Achencoil (b) Arienkavu (c) Kallar and (d) Shenduruney. Altitude varies from 76 m (Achencoil) to 1922 m (Devarmalai) above the mean sea level. The important peaks present in this division are Devermali (1922 m), Pepparai (1916), Kottamala (1570), Tuval Mala (1436), Ramakal Theri (1180), Karimala Kadakkal (17631), Alwarkuruchi peak (1579), Pongumalai (16-9), Mudira malai (1041), Thirthakara malai (849) and Nilankoil Mottai (807).

The soil fertility varies according to the position of slope, soil depth; presence of stonyness, soil is deep, fine and fertile in the valleys while it is shallow and bouldary in the hill ridges. Laterite is also formed in varying degrees of disintegration of hard rock to fine gravel. The soil along the stream and river banks is of alluvial deposit being deep enough to support good tree growth. The climate is tropical with not much appreciable variation in both seasonal and diurnal temperature. Generally the climate is hot and humid. The hottest months are March, April and May and the coldest months are December, January and February. The maximum and minimum mean daily temperature during the hottest month of March and coldest month of January are 35.8°C and 20°C respectively. Both south-west and north-east monsoon bring in rain, but the tract receives bulk of the rainfall from the south-west monsoon with long duration and lasts from June to August.

The north-east monsoon lasts for about three months from October-December. The major forest types present in this division are the west coast tropical evergreen forests, southern hill top evergreen forests, the west coast semi-evergreen forests and southern moist mixed deciduous forests.

3.5. Thiruvananthapuram Forest Division

The Thiruvananthapuram Forest Division, the southernmost territorial division of the State is situated within 8º 17' 50" and 8º 53' 42" N and 76° 40' 24" and 77° 17' E . The area lies within Neyyattinkara, Thiruvananthapuram and Nedumangad Taluks of Thiruvananthapuram Revenue District and Chirayinkizhu, Kottarakkara and Pathanapuram Taluks of Kollam Revenue District and encompass an area of about 300 km². It is bounded on north by Shendurney Wildlife Sanctuary and part of Punalur Division, east and south, the interstate boundary with Tamil Nadu and west the Arabian Sea. Forest tract of the division is mainly situated on the western side of the Western Ghats and the altitude varies from 50 m to 1869 m (Agasthyarkoodam). The other two peaks are Chottupura (490m) and 'Aathirumala' (720m). The climate is generally tropical and moderately cool in higher areas like Ponmudi. The dry season is from December to April and the hottest month is March. Most of the precipitation is received during south west monsoon which prevails from June to August. Pre-monsoon or summer showers are frequent in the months of March, April and May. North east monsoon too contribute considerably to the total precipitation of the area. The division is characterized by network of drainages which ultimately culminate to four major rivers namely Karamana Ar, Neyyar, Vamanpuram Ar and Kulathupuzha Ar. The natural vegetation of the division includes the following forest types, i.e., west coast tropical evergreen forests, semi evergreen forests, southern moist deciduous forest, grasslands, reed brakes, and myristica swamps. A small patch of montane grass lands and shola patches are also seen at Ponmudi and Varayattumudi.

CEPF – ATREE

Chapter IV

APPROCH AND METHODS

4.1 Development of Criteria

In order to maintain the objectivity in identification of biologically rich and community managed forests in the area, technically appropriate criteria were used. They were developed based on the similar studies conducted in the country and elsewhere for identifying the conservation important areas. Interaction with conservation planners, researchers and managers, also helped in formulating the criteria. Hence two level criteria were developed; the first level is being used at desktop stage with the help of satellite data for short listing the patches of forests and the second level on the data collected on certain biological and sociological parameters from each patch to prioritize the short-listed patches. The major principles of the criteria for the identification of conservation reserves were representativeness. It implies the representation as, climax type of forests, biological wealth indicated by species richness and presence of conservation important (endemic) and critical species of plants and animals (vertebrate species excluding mammals), natural resources like water bodies and human ecological dimensions indicated through dependency and resource collections. The information with respect to these parameters was collected through direct observation and from different documents of forest department and Vana Samarakshana Samithis (VSS). The criteria thus developed were finalized through consultative process with stakeholders.

4.2. First level criteria

In the first level, two criteria were used, type of forests and general involvement of community organization in the management of the forest areas (Figure 4.1)

4.2.1 Type of the forest

Type of the forest is commonly assessed by the nature, assemblage of different plant species and the behavior of geographic areas. It is directly related to forest potentiality, because diversity varies according to the forest types. Some studies reveal conspicuously reduced species richness in secondary (developed after clear-felling) or degraded (affected by logging) rainforests (Parthasarathy 1999; Keßler *et al.*, 2002). Tree diversity is high in evergreen forest compared to other forest types (Callicott *et al.*, 2007). Schulze *et al.* (2004) revealed that tree species richness

CEPF – ATREE CED

12

is roughly parallel to the faunal assemblage. This relation is not surprising considering the crucial role of trees in structuring tropical forest habitats and in providing resources for many other organisms (Kessler *et al.*, 2005). As a result, tree species richness explains 88% of the variation of fruit- and nectar-feeding birds and 83% of the variation among fruit-feeding butterflies (Schulze *et al.*, 2004). Here the importance has given to primary/evergreen forest types since biogeographically it represents the climax vegetation.

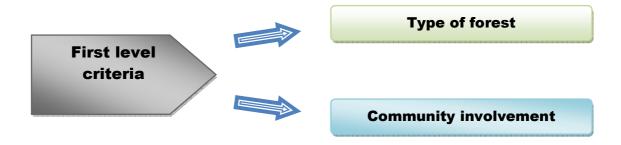


Fig 4.1: Schematic representation of first level criteria

4.2.2. Community involvement

Most of the criteria are limited to biodiversity aspects. Since the conservation reserves are invariably located in the territorial divisions and the community had rights vested with such forests and further, need to be managed by a committee represented by local people and forest managers, the current level of involvement of local people in conservation planning and management has been taken into account. Such planning for the stabilization of natural ecosystem is essential and this will reduce the conflicts on the natural forests once it has become community reserve that would prevent further loss of biodiversity in the longer run (Balaguru et al., 2006). As per the participatory forest management (PFM), the community has a major role to play in the conservation of forest (Kotwal et al., 2008). The presence of a suitable community institution in the jurisdiction of conservation reserve area would be a desirable condition for better management.

4.3. Second level criteria

4.3.1 Conservation Value

The conservation of an area is related to the ecosystem diversities and biodiversity. Biodiversity conservation is now widely acknowledged around the world as a fundamental part of ecologically

CEPF – ATREE

sustainable forest management (Hunter, 1999; Lindenmayer *et al.*, 2006). The concept of biodiversity encompasses the entire biological hierarchy from molecules to ecosystems and it includes entities recognizable at each level (genes, taxa, communities, etc.) and the interactions between them (Margules *et al.*, 2002). Floral characteristics demonstrated through floristic composition and usually plant richness positively correlated with faunal species (Wright and Samways, 1996). The parameters selected for conservation value are species richness, endemism and, rare, endangered and threatened (RET) status of the species and unique ecosystem (Figure 4.2).

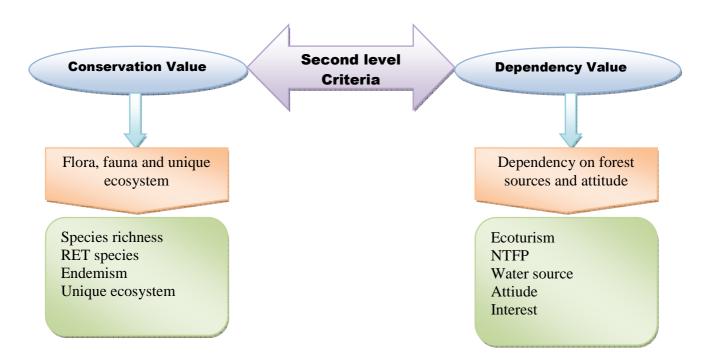


Fig 4.2: Schematic representation of secondlevel criteria

4.3.1 a. Species Richness

Greatest number of species in the selected sites is not the most efficient way to maximally represent biodiversity (Pimm and Lawton, 1998; Reid, 1998) because; it brings even the representatives of species also. Representation alone cannot ensure the maintenance of natural processes and survival of native species (Noss, 1995). However, it has become increasingly apparent that focusing on the representation of biodiversity does not guarantee the persistence of

viable populations or the protection of ecological processes that maintain biodiversity (Smith *et al.*, 1993; Cabeza and Moilanen, 2001; Kareiva and Marvier, 2003). As well as the presence of more population of particular species is not a character of good diversity in an area. Conservation efficiency is achieved by maximizing complementarities, the smallest set of sites with the greatest combined coverage of species presence (Pressey *et al.*, 1993; Williams *et al.*, 1996; Csuti *et al.*, 1997; Kati *et al.*, 2004) and their populations. The species richness is an indirect indication of the diversity of a particular group in an area.

b. RET species

Conservation of biodiversity will be more effective only if due importance is given to RET species. The analysis focused on rare, endangered and threatened species in addition to total species, as this group is the most vulnerable and most in need of conservation action (Eken *et al.*, 2004). The most widely published prioritization of species for conservation action has been these categories defined by the IUCN and Red Data Book (Kumar *et al.*, 2000; Nayar and Sastry, 1990; Ramesh *et al.*, 1997) and useful in providing guidelines for setting conservation priorities (Possingham *et al.*, 2002). Prioritization could be carried out based on the number of RET species present in a given area.

c. Endemic species

Richness of endemic species is largely assisted by certain climatic conditions. Disturbance of the micro climate directly leads to loss of these species. Most of the endemic species with small geographic range end up as rare species and later threatened species unless their habitat is protected (Nayar, 1996). Endemic species requires prime importance in conservation measures (Ramesh *et al.*, 1997). Endemism is one of the surrogates used to identify possible conservation areas also (Curnutt *et al.*, 1994).

d. Unique ecosystem

Like peculiar conditions of endemic species, the interaction between different climatic and edaphic factors allows the development of specialised microhabitats in particular regions. These microhabitats provide environment for selected species called 'habitat specialist' because they have a significant positive correlation with their habitat or they cannot survive outside the specific habitat (Hubbell and Foster, 1985). Such micro habitats may not be present throughout the Ghats and restricted to certain regions only. Hence they are very significant from conservation point of view and to maintain these unique habitats, they have to be adequately brought under suitable conservation efforts such as conservation reserves.

CEPF – ATREE

4.3.2 Dependency Value

4.3.2 a. Ecotourism

Ecotourism is a growing sector in the modern world. Even though ecotourism may degrade habitats and landscapes if not properly planned, it can help to generate awareness for conservation and local culture and create economic opportunities for countries and local communities (Buyinza and Acobo, 2009). Eco-tourism, however, requires a proactive approach that mitigates the negative impact and enhances the positive impact on nature (Mader, 2002). It can transform rural communities and these ventures generate income and encourage conservation of natural resources (Buyinza and Acobo, 2009). Dependency of community in forest, in the case of income from ecotourism, has been considered as criteria because the growing importance given for ecotourism and the non extractive value of the natural resources are something which planners and conservationists need to tap for the sustainability. Such avenues will encourage the local communities in participating biodiversity management programmes.

b. Type of Non Timber Forest Product (NTFP) collected

Local communities are allowed to collect selected NTFPs from the forests for livelihood support. NTFP management is one of the fundamental activities for sustainable forest management and conservation strategies (Arnold, 2002). Harvesting of NTFPs can have either positive or negative impact on the conservation of biodiversity (Bhattarai and Croucher, 1996). In the absence of proper management and control in the collection and trade, NTFPs are becoming vulnerable, endangered and even extinct (Acharya, 2000). The NTFP collection and marketing is supporting the local economy of the people in a substantial way. Hence the contribution of NTFP towards the income of VSS members/VSS as an institution is considered as a criterion for prioritizing the conservation reserves.

c. Dependence on water source

The communities who are residing near the forest area depend on the natural water sources for their drinking and other purposes. In most of the occasions, draught is not being experienced in such area, which indicates the role of forests in providing water for sustenance. If a forest area comprises large proportion of catchment, it has critical role in maintaining water quality and quantity (Sulistioadi *et al.*, 2004). Presence of water bodies could enhance the habitat value of

the surrounding forest area (Ravan *et al.*, 2005) and their dependence is considered an important criterion for deciding the importance of the patch.

4.3.3. Community attitude and awareness

The protected area authorities have failed to certain extent in attempting involvement of local people in conservation planning and management taking their concerns and trying to solve the issues through better management options derived through consultations and consensus building (Melkani, 2001). When identify a potential area of forest for conservation reserve, awareness and attitude of the community have to be considered (Harshaw et al., 2009). As part of the Participatory Forest Management (PFM) activities, the involvement of communities in conservation of forests in the country has yielded desirable results (Kotwal et al., 2008). As was expected, PFM programs have had positive results, because people have a stake in the outputs (Hill and Shields, 1998). Awareness and attitude in common forest resources management systems is growing and expanding as demonstrated by a number of studies (Nkembi, L.N. 2003). In this study, we considered the community awareness and attitude, as the criteria, to evaluate the extent of community's capability, to protect the identified potential areas of forest.

4.4. Identification and short-listing of patches

The preliminary identification and short-listing of the patches were carried out with the help of first level of criteria. To identify the patches, priority was given to the region having more evergreen forest patches with community involvement. This was done with the help of Survey of India toposheets (1: 50,000 Scale),IRS P6 LISS IV images and GIS softwares such as ArcGIS 9.3.1 and ERDAS IMAGINE 9.3, and the properties of toposheets, LISS IV images and community involvement in ABR were given in the Table 4.1, 4.2 and 4.3. The patches which qualify with certain threshold level of first level criteria were considered as short-listed patches.

Table 4.1: Details of toposheets used

S.	Toposheet	Covering region		
No.	No.	Forest Range	Forest Division	
1	58H-2	Paruthipally, Palode, Kulathupuzha	Thiruvanathapuram	
2	58H-6	Paruthipally	Thiruvananthapuram	
3	58D-13	Kulathupuzha	Thiruvananthapuram,	
3	36D-13	Anchal	Punalur	
		Palode, Kulathupuzha,	Thiruvananthapuram,	
4	58H-1	Anchal	Punalur	
		Arienkavu, Thenmala	Thenmala	
		Arienkavu	Thenmala	
5	58C-16	Anchal, Pathanapuram,	Punalur	
		Konni, Neduvathumuzhi,	Konni,	
	58G-4	Arienkavu	Thenmala, ,	
		Achancovil, Kallar, Kanayar	Achancovil	
6		Pathanapuram	Punalur	
		Mannarpara, Naduvanthumuzhi,	Konni,	

Table 4.2: Details of satellite images used

Orbit No.	Path/Row	Date	Place of Image
6551	102/136	20-Jan-05	Achancovil
6551	102/137	20-Jan-05	Thenmala
6551	102/138	20-Jan-05	East of Kulathupuzha/Peppara Dam
6551	102/138	20-Jan-05	Peppara Dam/East of Kulathupuzha
11794	201/126	24-Jan-06	Kulathupuzha Thenmala
17193	102/139	8-Feb-07	North of Neyyar
17193	102/140	8-Feb-07	Neyyar
7304	103/40	14-Mar-05	North Trivandrum District
7304	103/038	14-Mar-05	North of Thenmala

Table 4.3: List of VSS in Agasthyamalai Biosphere Reserve in Kerala

S.No.	Name of VSS	Reg. No.	No. of family	Range
Thiruvar	। nanthapuram Forest Divi	sion		
1	Pottamavu	461-2/2001	78	Kulathupuzha
2	Thannimoodu	561-1/98	46	Kulathupuzha
3	Adipparambu	561-5/01-02	53	Kulathupuzha
4	Mathrakarikkakam	561-5/02	126	Kulathupuzha
5	Peethalakarikkakam	562-4/01-2	68	Palode
6	Chekkonam	562-6/01-02	173	Palode
7	Vellyamdesam	562-3/01-02	133	Palode
8	Kochcdapupara	562-2/01-02	65	Palode
9	Pachamala	562-05/01-02	81	Palode
10	Mankayam	562-7/05-06	67	Palode
11	Ponmudi	562-8/05-06	108	Palode
12	Pattankulichapara	563-2/01-02	125	Paruthipally
13	Narakathinkala	563-1/01-02	102	Paruthipally
14	Kallar	563-3/03	137	Paruthipally
Thenmal	a Forest Division			
1	Villumala	531-1/99	398	Thenmala
2	Poothottam-pathekkar	531-3/02	70	Thenmala
3	Malavedar Colony	531-5/02	162	Thenmala
4	Ottakkal	531-4/2006	145	Thenmala
5	Kadamanpara	532-1/02	88	Arienkavu
6	Kottavasal	532-2/02	134	Arienkavu
7	Edappalayam	532-4/02	195	Arienkavu
8	Rajathottam	532-5/02	115	Arienkavu
9	Karayalarthottam	(532-5/02	126	Arienkavu
10	Palaruvi	532-6/03	132	Arienkavu
11	Karayalarmeth	532-7/07	186	Arienkavu
Punalur	Forest Division			l
1	Vanchiyodu	542-1/99	122	Anchal
2	Erayil	542-2/01	100	Anchal

3	Mukkoodu	542-3/01	77	Anchal
4	Kocharippa-Edappana	542-4/02	85	Anchal
5	Nattukal	542-5/02	63	Anchal
6	Cherukara	542-8/02	108	Anchal
7	Kallupacha	542-9/02	53	Anchal
8	Kudukkathupara	542-10/02	71	Anchal
9	Tholippacha	542-11/02	38	Anchal
10	Mampazhathara	541-7/02	55	Pathanapuram
11	Cherukadavu	541-12/02	115	Pathanapuram
12	Olappara	541-13/03	98	Pathanapuram
Konni Fo	rest Division			
1	Mullumala	521-1/99	79	Mannarappara
2	Avanippara	521-1/02	24	Mannarappara
3	Vellamthatty	521-2/02	33	Mannarappara
4	Chembanaruvi	521-3/02	116	Mannarappara
5	Kadambupara	521-4/03	184	Mannarappara
6	Nellikkappara	522-1/02	131	Naduvathumoozhi
7	Appuppanthodu	522-2/02	93	Naduvathumoozhi
8	Padam	522-3/02	181	Naduvathumoozhi
9	Neeramakulam	522-4/02)	82	Naduvathumoozhi
10	Thalamanam	522-5/02	120	Naduvathumoozhi
11	Kottampara	522-6/02	10	Naduvathumoozhi
12	Kattathi	522-7/02	28	Naduvathumoozhi
13	Manneera	522-8/02	108	Naduvathumoozhi
14	Vilakkupadi	522-9/03	67	Naduvathumoozhi
15	Allumkal	522-10/03	82	Naduvathumoozhi
16	Kampakathumpacha	522-11/03	38	Naduvathumoozhi
17	Vadakke Manneera	522-12/03	122	Naduvathumoozh
18	Thavalappara	523-1/02	244	
19	Elimullaplackal	523-2/02	228	Konni
20	Avolikkuzhy	523-3/02	209	Konni
Achancovil Forest Division				
1	Achenkovil	551-1/00	81	Achenkovil
2	Manalar- Kumbhavurutty	551-2/02	17	Achenkovil

3 Achenkovil West	551-3/06	98	Achenkovil
-------------------	----------	----	------------

4.5. Collection of primary data on biological and social parameters

The short-listed patches of forests were visited by a team of researchers and amatures who are specialized on plants, birds, amphibians, butterflies, etc... The locations surveyed were Ponmudi, Upper Sanatorium, Kallar, Meenmutti, Marutwa Malai, Chankili, Achancovil, Kottavasal and Kumbhaourutti. Particular attention was given to include altitudinal ranges of the region and this implies coverage of a wide range of altitudes from 100m MSL to 1200M MSL. The variety of habitats included are moist-deciduous forest, semi-evergreen forest, evergreen forests, high altitude shola grassland, riparian forest, secondary and degraded forests for the above mentioned types. Quadrate (20m x 20m) method for evergreen trees, and transect method, covering about 5 km, for both butterflies and birds were used in field survey. The checklists for reptiles, amphibians and fishes were prepared based on observations and corollary findings recorded during the earlier visits. GPS readings of transects were also recorded. The members of the local communities and local institutions (e.g. VSS) were consulted in collecting data with respect to resource species and the dependency.

The dependency criteria were limited to collecting NTFP and their income out of it, income from ecotourism, dependency on drinking water, etc. These data were collected through standard questionnaires and VSS documents. Name and corresponding short-listed patches are given in the table 4.4.

Table 4.4: Name of VSS and corresponding short-listed patches

Name of VSS	Corresponding selected patch	Name of Forest Range	Name of Forest Division
Ponmudi	Ponmudi	Palode	Thiruvananthapuram
Kallar	Kallar	Paruthipally	Thiruvananthapuram
Pottamavu	Chankili	Kulathupuzha	Thiruvananthapuram
Manalar Kumbavaratti	Achancovil	Achancovil	Achancovil

4.6. Analysis of data and prioritization of patches using spatial format

In order to prioritize the short listed patches of forests Weighted Sum Overlay Analysis (Arc GIS 9.3.1 v) were carried out. The input layers corresponding to conservation and social (dependency) values were analyzed. The thematic layers were species richness, endemism and

CEPF – ATREE

RET species of birds, butterflies, reptiles, amphibians, evergreen tree species and presence of unique ecosystems under the conservation values and ecotourism, income from NTFP, dependency to water sources, interest and awareness of nearby joint forest management institutions (Vana Samrakshana Samithi -VSS) under social (dependency) values. The maximum weightage for each thematic layer is 10 and the details of weightage assessment as per composition of parameters is given in the table 4.5, whereas for null values manually given zero. Each theme has been overlaid for analysis.

Class	Proportion of total interval (%)	Class	Weightage
1	0< - 25	Low	2.5
2	26 – 50	Low medium	5.0
3	51 – 75	High medium	7.5
4	76 - 100	High	10

Table 4.5: Details of weigtage assessment as per composition of parameters

The thematic layers were combined to get composite picture of conservation importance. Each layer composed of polygons that represent geographical areas assigned to one of the four classes of the corresponding type of information. By merging vector layers of these polygons, a new set of polygons were produced. The new layer contained polygons whose attribute information included the classes of each of the thematic layers. Then, for each polygon, a conservation and dependency score was derived from the classes to which they belong, and stored as new attribute information. The weightage for each patch (Wp) was calculated as follows:

$$Wp = \sum_{i=1}^{21} Ci$$

Where i is the information layer and Ci is a coefficient given according to the class to which the polygon belongs in layer i. The coefficients were from 2.5 to 10 with increments of 2.5 (class 1= 2.5, class 4= 10). The minimum and maximum possible values for ecological aspect would be 2.5 and 160 and for social aspect it is 2.5 and 50 respectively. Therefore, the total minimum possible weightage for a patch would be as low as 2.5 and maximum is as high as 210. These ecological and social aspect values were regrouped to obtain final map. Based on the weightage accorded for each patch, they would be prioritized. The patches which carry the

appropriate significance.

Chapter V

RESULTS AND DISCUSSION

5.1 Identification of vegetation types

According to first level criteria, vegetation type is a criterion for short-listing the patches to identify potential areas as Conservation Reserves. The Kerala part of ABR composed of five territorial forest divisions such as Thiruvananthapuram, Thenmala, Punalur, Konni and Achancovil and the different vegetation types and their extent are described below.

5.1.1 Thiruvananthapuram forest division

The Thiruvananthapuram forest division, the southernmost territorial division of the State is situated within 8° 17′ 50″ and 8° 53′ 42″ N and 76° 40′ 24″ and 77° 17′ E. The area lies within Neyyattinkara, Thiruvananthapuram and Nedumangad Taluks of Thiruvananthapuram Revenue district and Chirayinkizhu, Kottarakkara and Pathanapuram Taluks of Kollam Revenue district. This Division is covering the area of 59875.75ha and composed of three forest ranges such as Paruthipalli, Palod and Kulathupuzha. The moist deciduous type of forest occur in largest portion is 11645.51ha, then evergreen (11577.85ha), semi evergreen (7101.66ha), tree savanna/grassland (6629.19ha), plantation (2020.79ha) and the remaining area covered by settlements and water bodies. Map of different forest types in Thiruvananthapuram forest division shows in fig. 5.1.

5.1.2 Thenmala forest division

Thenmala forest division is situated in the Pathanapuram and Kozhencherry Taluks of Kollam and Pathanamthitta Revenue districts respectively and lies within 76° 59' 30" and 77° 16' 30" north latitude and 8° 44' and 9° 44' and 9° 14' south latitude. This division is covering an area of 15474.07 ha and composed of two forest ranges such as Thenmala and Ariyankavu. Moist deciduous forest predominates (4436.95ha) the landcover and subsequently tree savanna/grassland (3617.57ha), semi evergreen (3199.00ha) and evergreen (940.55ha) are the other natural forest types. Plantation is covered about 2047.93ha and and the remaining area

covered by settlements and water bodies. The fig. 5.1 shows the map of forest types in Thenmala forest division.

5.1.3 Punalur forest division

Punalur forest division coming under Pathanapuram and Kottarakkara Taluks of Kollam district lies between 8° 52' and 9° 7' N latitude and 76° 35' and 77° 6' E longitude. This division consists of two forest ranges such as Pathanapuram and Anchal, covering an area of 35613.23 ha. The largest area of forest type of this division is moist deciduous, covering the area of 14752.69ha, and then tree savanna/grassland (4252.37ha), semi evergreen (3137.64ha), evergreen (338.16ha), plantation (4014.58ha) and the remaining area is covered by settlements and water bodies (Figure 5.1).

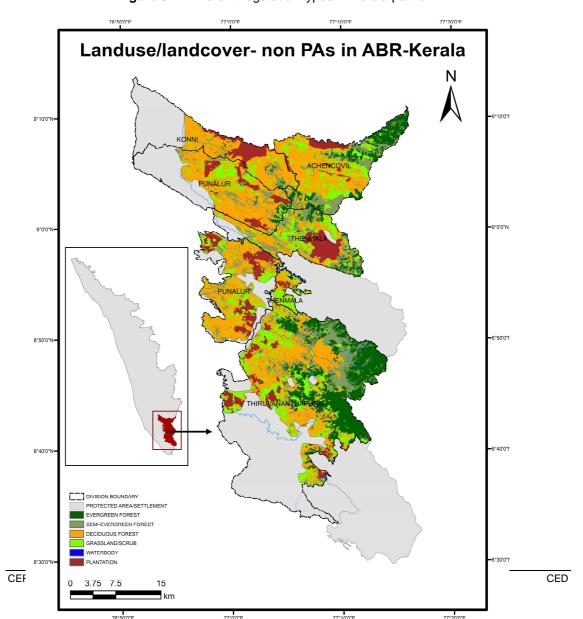


Figure 5.1: Different vegetation types in Kerala part of ABR

5.1.4 Konni forest division

Konni forest division falls under Karunagapally and Pathanapuram Taluks of Kollam District and portion of Kozhenchery and Adoor Taluks of Pathanamthitta district. The division area lies between 9° 3' and 9° 15'N latitude and 77° 4' and 77° 6'E longitude. This division is composed of Konni and Naduvathumoozhi ranges covering the area of 16008.96ha. The largest portion of the forest type is moist deciduous, covering an area of 5557.16ha, and then semi evergreen (730.32ha), tree savanna/grassland (675. 01ha), evergreen (194.12ha), plantation (1642.55ha) and remainig portion covered by settlements and waterbodies (Fig 5.1).

5.1.5 Achancovil forest division

Achancovil forest division falls under Kollam and Pathanamthitta Revenue districts. The area of reseve forest lies between 9° 2′ 9″ N to 9° 12′ 30″ North latitudes and 77° 3′ 51″ to 77° 16′ 7″ East longitudes. This division composed of three ranges such as Kallar, Kanayar and Achancovil, covering an area of 17451.81ha. The major natural vegetation in this division is moist deciduous with an area of 6801.09ha and then tree savanna/grassland (3405.60ha), semi evergreen (3142.37ha), evergreen (3059.47ha), plantation (1042.97ha) and remaining area is covered by settlements and waterbodies. Map of different forest type of Achancovil forest division is given in the fig. 5.1.

5.2 Level of community involvement and shortlisitng of patches

The community involvement in the territorial divisions was assessed through the interactions with the VSS officials and other records. While reviewing the different VSSs and their respective geographical area of interventions, it was found that Kallar, Ponmudi, Chankili and Achancovil need special mention (Table 5.1). The type of interventions in these areas are fire protection, planting of degraded forests, collection of NTFP, general protection activities, management of ecotourism (except Pottamavu), etc.

Among these four patches, three are in Thiruvananthapuram forest division, lying between Peppara WLS and Shendurny WLS. The fourth one, the smallest patch is lying in Achancovil division, one of the northern forest divisions of ABR. The map of short-listed patches is given in the fig. 5.2.

Figure 5.2 Landuse/landcover map of short-listed patches

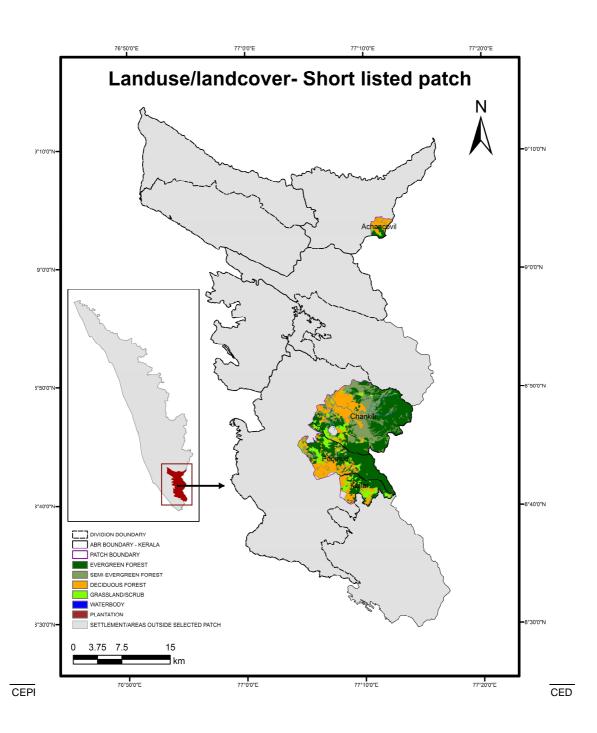


Table 5.1: Details of short-listed forest patches

VSS name	Corresponding short-listed patch	Patch area (km²)	Location
Ponmudi	Ponmudi	57.175327	Palod Range of Thiruvananthapuram FD
Kallar	Kallar	24.051027	Paruthipally Range of Thiruvananthapuram FD
Pottamavu	Chankili	119.645728	Kulathupuzha Range of Thiruvananthapuram FD
Manalar Kumbavaratti	Achancovil	7.551238	Achancovil Range of Achancovil Forest Division

5.3 Characterisation of shortlisted patches

Characterisation of shortlisted patches was attemped with the help of second level criteria (fig 4.2). The short-listed patches at Kallar, Ponmudi, Chankili and Achancovil are considered for the collection of primary data for characterization. The primary data are grouped under two categories such as biological aspects and social aspects, the biological aspect related to selected groups of fauna, and flora and unique habitat, and the social aspect related to dependency of community. All the parameters on both the biological and social aspects are described below.

CEPF – ATREE

5.4 Biological value

5.4.1 Species richness

a. Evergreen trees

The species richness of evergreen trees is varying from 40 to 66. The highest species richness is from the Achancovil forest patch (66) and the lowest is 40 in two patches such as Kallar and Ponmudi, whereas 64 species is identified from Chankili patch. These values have been brought 4 classes with equal interval 6.5 to assign weightage in thematic map. So, the class 1 is 40 – 46.5, class 2 is 46.6 – 53, class 3 is 53.1 – 59.5 and class 4 is 59.6 - 66. Thematic map of evergreen tree species richness shows in figure 5.3.

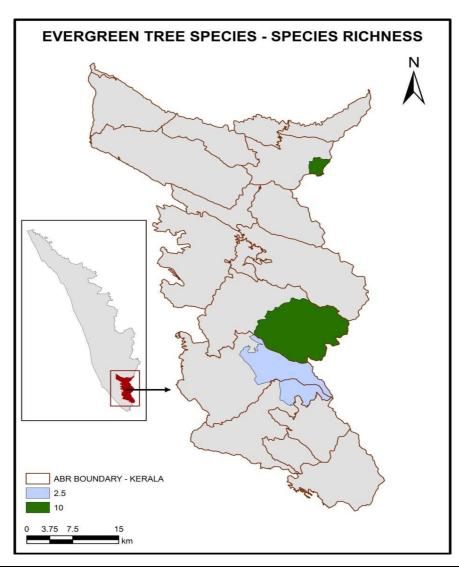


Fig 5.3: Thematic map of species richness of evergreen trees

b. Birds

The species richness of birds in four short-listed patches is varying from 72 to 115. The highest number of bird species was reported from Ponmudi (115) and lowest in Chankili (72) whereas the Achancovil and Kallar patches show 96 and 79 species respectively. These values are divided into four classes with class interval of 10.75 for giving weightage in thematic map. So, the class 1 is 72 - 82.75, class 2 is 82.76 - 93.5, class 3 is 93.6 - 104.25 and class 3 is 104.26 - 115. Thematic map of bird species richness is given in fig. 5.4.

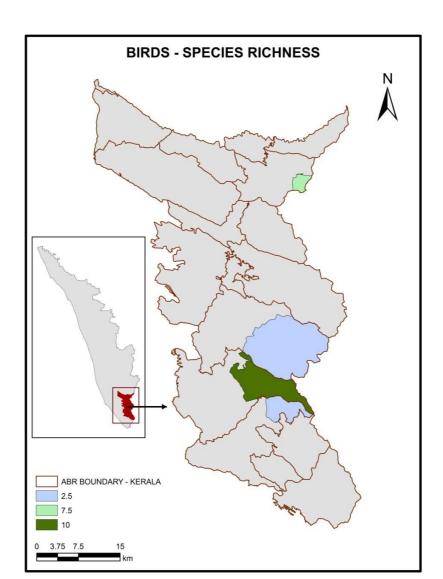


Fig 5.4: Thematic map of species richness of birds

c. Butterflies

In short-listed four patches, species richness of butterfles is varying from 88 to 131. This value is highest in Ponmudi patch (131) and lowest in Chankili patch is 88. In the meanwhile, Kallar shows 111 and Achancovil shows 96. The values of species richness are divided into four classes with equal interval is 10.75 for giving weightage in thematic map. So class 1 is 88 - 98.75, class 2 is 98.76 – 109.5, class 3 is 109.6 – 120.25 and class 3 is 120.26 – 131. The thematic map of species richness of butterflies is given in fig. 5.5.

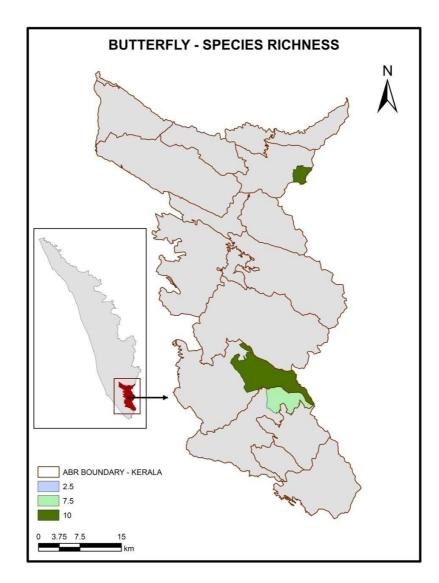


Fig 5.5: Thematic map of species richness of butterflies

d. Reptiles

The number of reptile species is varying from 10 to 19. The highest species richness of reptiles is recorded from Ponmudi (19) whereas the lowest species richness is 7, in Achancovil. The other two patches such as Kallar and Chankili show the values 16 and 10 respectively. These values are also divided into four classes with a class interval of 2.25 for giving weightage in thematic map. So, the class 1 is 10 - 12.25, class 2 is 12.26 – 14.50, class 3 is 14.51 – 16.75 and class 4 is 16.76 – 19. The low representation of reptiles in the survey may be due to the seasonal influence. Thematic map of reptile species richness is given in fig. 5.6.

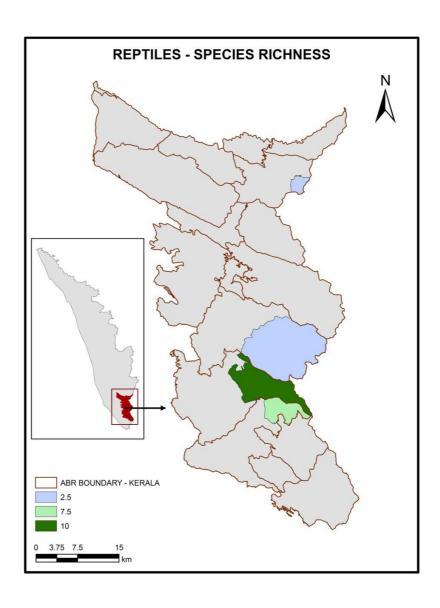


Fig 5.6: Thematic map of species richness of reptiles

e. Amphibians

The number of amphibian species in four patches is varying from 7 to 20, the low representation in the number may be due to the season sampled. The highest value is in Ponmudi patch which is 20 and lowest is 7,in Achancovil. Other patches such as Kallar and Chankili show the values 12 and 11 respectively. These values are splited into four classes with the interval of 3.25. So, the class 1 is 7 - 10.25, class 2 is 10.26 - 13.5, class 3 is 13.6 - 16.75 and class 4 is 16.76 - 20. The map of amphibian species richness in four patches is given in fig. 5.7.

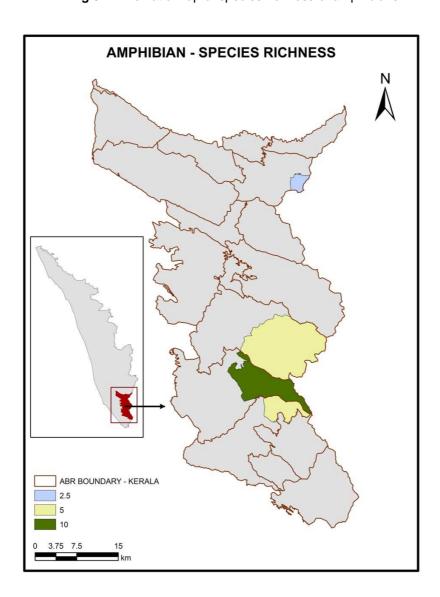


Fig 5.7: Thematic map of species richness of amphibians

5.4.2 Endemism

All living organisms cannot tolerate entire environmental conditions in biosphere. Position and morphology of earth surface provide some small specialized climatic situations called microclimates. Some species, called endemic species, can adopt only this type of limited microclimates; hence they usually are small in populations. Disturbunces and degradation of the regions of microclimates or there occur living populations will lead to threatened situation of these endemic species immediately when compared with other species. The extent of endemic species should be considered for identifying the potential areas of forest.

a. Evergreen trees

Percentage endemism of evergreen tree species on short-listed patches is varying from 27.5 to 33.33. The highest percentage of endemic evergreen trees are recorded from Achancovil is 22 and the lowest in both Kallar and Ponmudi patches is 11. In Chankili patch, 20 percentage of endemic trees are also identified. Endemic percentage values on four patches are divided as four classes with the interval of 1.45. So, the class 1 is 77.5- 28.95, class 2 is 28.96 - 30.41, class 3 is 30.42 - 31.87 and class 4 is 31.88 - 3.33. The thematic map of evergreen trees' endemism of four patches is given in fig. 5.8.

Fig 5.8: Thematic map of endemism of evergreen trees

CEPF - ATREE

CED

b. Birds

In short-listed four patches, endemic percentage of bird species is varying from 3.125 to 5.217. The percentage of bird endemism is highest in Ponmudi patch which is 6, and lowest in Achancovil is 3.125 whereas other two patches such as Chankili and Kallar show 4.166 and 3.79 respectively. These values are divided into four classes with the interval of 0.523. So, the class 1 is 3.12 - 3.64, class 2 is 3.65 - 4.17, class 3 is 4.18 - 4.69 and the class four is 4.7 - 5.217. The endemism showing thematic map of birds is given in fig. 5.9.

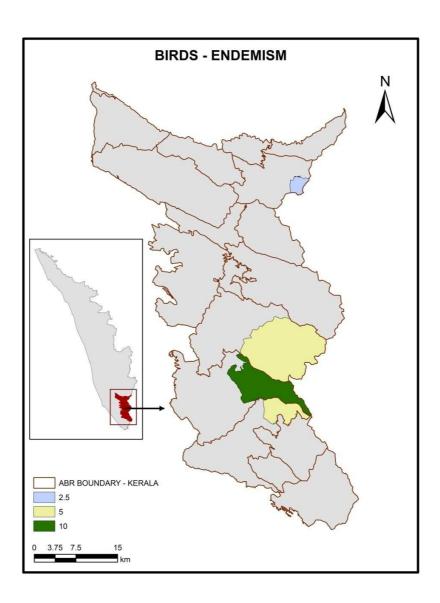


Fig 5.9: Thematic map of endemism of birds

c. Butterflies

The endemic percentage of butterflies in short-listed patches is varying from 5.83 to 16.03. It is highest in Ponmudi patch, 5.83 and the lowest in Achancovil, 5.83. The other two patches such as Chankili and Kallar show 13.63 and 10.81 respectively. These values are divided into four classes with the interval of 2.54. So, class 1 is 5.83 - 8.38, class 2 is 8.39 - 10.93, class 3 is 10.94 - 13.48 and class 4 is 13.49 - 16. 03. The thematic map of butterfly endemism in four short-listed patches is given in fig. 5.10.

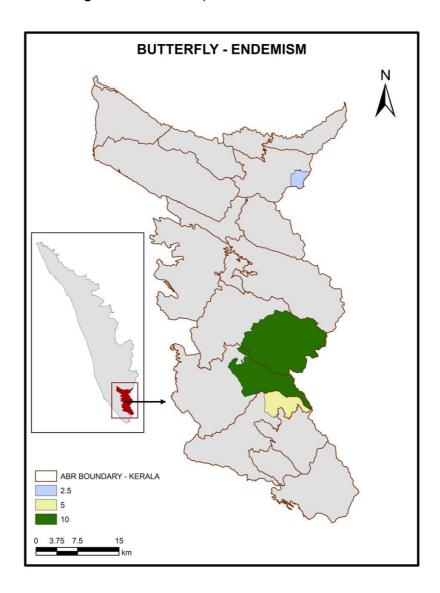


Fig 5.10: Thematic map of endemism of butterflies

d. Reptiles

The percentage of endemism of reptiles in the short-listed patches is varying from 8.33 to 31.57. The highest percentage endemism of reptiles is noted in Ponmudi patch which is 31.57 and the lowest in Achancovil, 8.33. The Kallar and Chankili patches show 25 and 20 respectively. These values are divided into four classes with equal interval of 5.81. So, class 1 is 8.33 - 14.14, class 2 is 14.15 - 19.95, class 3 is 19.96 - 25.76 and class 4 is 25.77 - 31.57. The thematic map of endemic species number of reptiles is given in fig. 5.11.

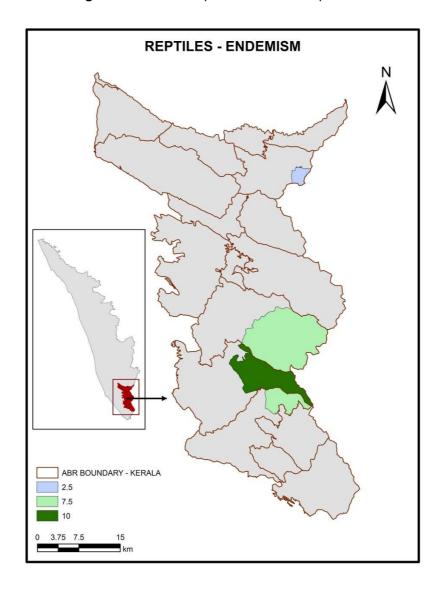


Fig 5.11: Thematic map of endemism of reptiles

e. Amphibians

Like other groups of species, percentage endemism of amphibians is showing varying trend, it is from 58.33 to 75, which is higher percentage than other groups. The highest percentage of endemic amphibian species is noted from the Ponmudi patch is 75 and lowest in Achancovil patch is 58.33. Other two patches such as Chankili and Kallar show 72.72 and 58.33 respectively. These values are divided into four classes with equal interval of 4.16. So, the class 1 is 58.33 - 62.49, class 2 is 62.5 – 66.66, class 3 is 66.67 – 70.83 and 70.84 – 75. The thematic map of endemic species of amphibians is given in fig. 5.12.

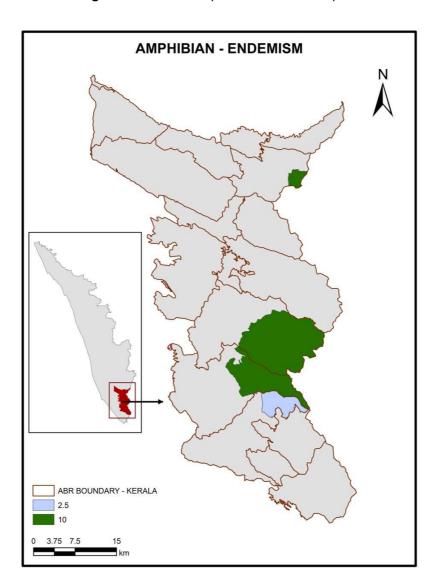


Fig 5.12: Thematic map of endemism of amphibians

5.4.3 Critical species

a. Evergreen trees

The species coming under rare, endangered and threatened (RET) categories are considered as critical species. The percentage of critical species of evergreen trees is varying from 9.37 to 20. The highest value is recorded from both the Ponmudi and Kallar patches is 20 and lowest is from Chankili is 9.37 whereas the Achancovil patch shows the value of 10.60. These values are divided into four classes with the interval of 2.65. So, the class 1 is 9.37 - 12.02, class 2 is 12.03 - 14.68, class 3 is 14.69 - 17.34 and class 4 is 17.35 - 20. The map of the evergreen critical species is given in fig. 5.13.

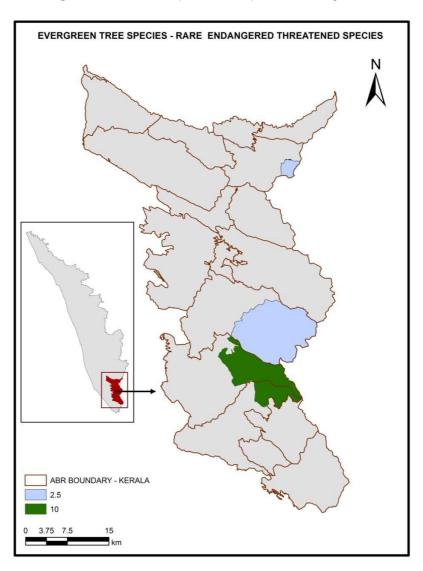


Fig 5.13: Thematic map of critical species of evergreen trees

b. Birds

In the shortlisted four patches, percentage of critical species of birds is varying from zero to 4.34. The percentage of birds' critical species is highest in Ponmudi patch which is 4.34, but in Kallar there is no species identified as critical species. At the same time, from the Chankili patch, 2.77 percentage of species and from Achancovil 1.04 percentage of species recorded are identified as critical species of birds. These values, except zero, are splited into four classes with the interval of 0.82. So, the class1 is 0 < -1.86, class 2 is 1.87 - 2.69, class 3 is 2.7 - 3.51 and the class 4 is 3.52 - 4.34. The thematic map of critical species is given in the fig. 5.14.

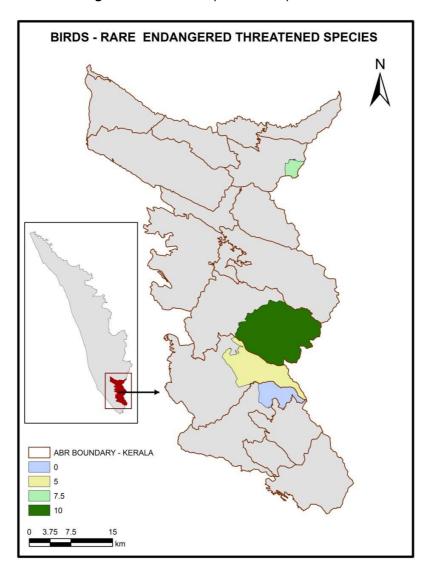


Fig 5.14: Thematic map of critical species of birds

c. Butterflies

When compared to other species, butterflies show lower percentage of critical species in the four patches surveyed. This percentage value is varying from 0.83 to 1.52. The highest percentage is 1.52 at Ponmudi and the lowest is 0.83 from Achancovil patch. In other patches such as Chankili and Kallar, show the percentages as 1.13 and 0.9 respectively. These values are divided into four classes with the interval of 0.17. So, the class 1 is 0.83 - 1, class 2 is 1.001 - 1.179, class 3 is 1.18 - 1.35 and 1.36 - 1.52. The map of the critical species of butterflies is given in fig. 5.15.

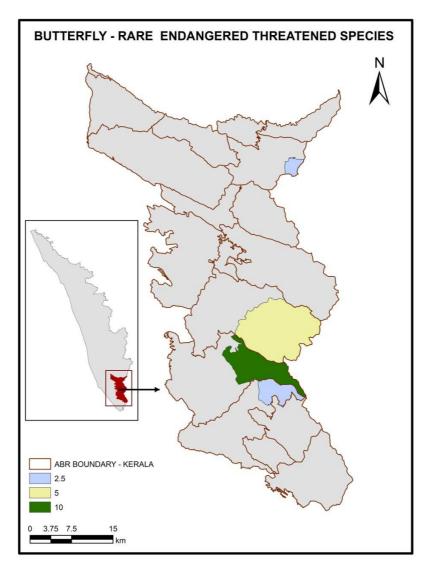


Fig 5.15: Thematic map of critical species of butterflies

d. Reptiles

When compared to percentage of endemism in other species, reptile shows higher values in four patches. It is varying from 37.5 to 58.33. The highest percentage is identified from Achancovil which is 58.33 and the lowest value is identified from Kallar patch. The other two patches such as Ponmudi and Chankili show 42.10 and 40 respectively. These values are divided into four classes with the interval of 5.20. So, the class 1 is 37.5 - 42.7, class 2 is 42.71 - 47.91, class 3 is 47.92 - 53.12 and class 4 is 53.13 - 58.33. The Thematic map of threatened species percentage of reptiles in four patches is given in the fig. 5.16.

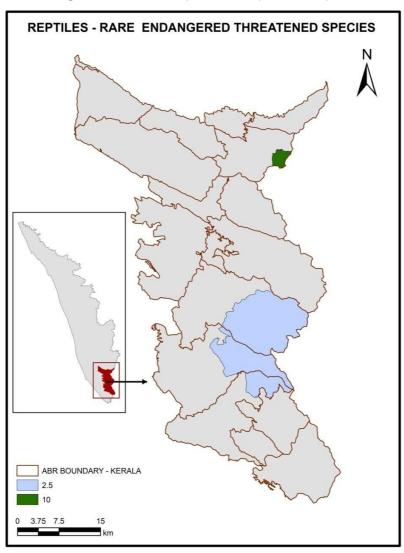


Fig 5.16: Thematic map of critical species of reptiles

e. Amphibians

The percentage of critical species of amphibians in four patches is varying from 20 to 63. This percentage is highest in Chankili which is 63.63 and lowest in Ponmudi, 20. The other patches such as Achancovil and Kallar show 42.85 and 33.33 respectively. These values are divided into four classes with the interval of 10.90. The class 1 is 20 - 30.90, class 2 is 30.91 - 41.80, class 3 is 41.81 - 52.72 and class 4 is 52.73 - 63.63. The thematic map of critical species of amphibian species is given in the fig. 5.17.

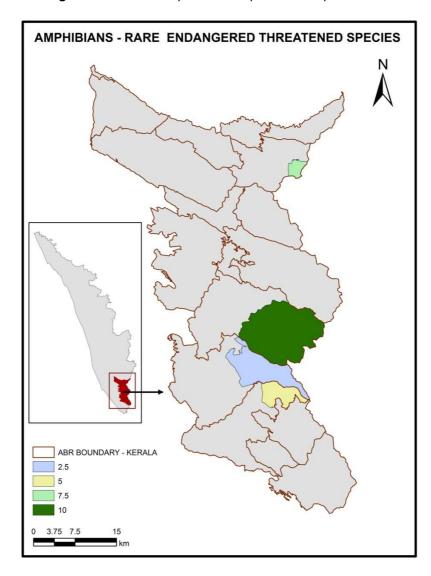


Fig 5.17: Thematic map of critical species of amphibians

5.4.4 Unique ecosystem

Like peculiar conditions of endemic species, the interaction between different climatic and edaphic factors allows the development of specific microhabitats in particular regions. Such micro habitats called unique ecosystem and may not be present throughout the Ghats and restricted to certain regions only. From four short-listed patches, Ponmudi has shola grassland and Chankili has *Myristica* swamps, whereas other two patches did not possess any distinct unique habitat and their thematic map is given in fig. 5.18.

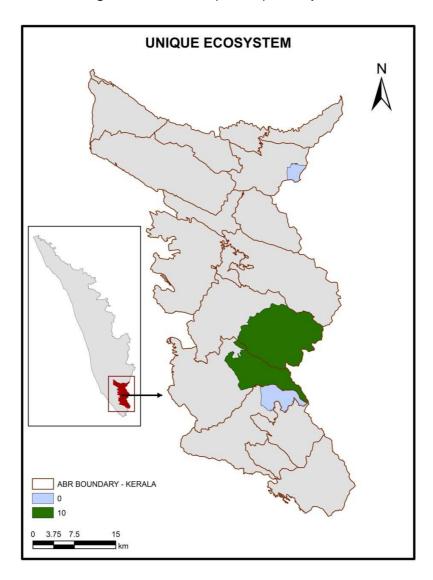


Fig 5.18: Thematic map of unique ecosystems

5.5 Social value

5.5.1 NTFP

The NTFP collection and marketing supports the local economy of the people in a substantial way. Hence the contribution of NTFP towards the income of VSS members may encourage conserving the forest. In order to assess their dependency on NTFP, the income has been considered. Thus the annual income of a community from NTFP is the highest at Pottamavu VSS ie, Rs/- 7200 and the lowest in Kallar VSS ie., Rs/- 864. In the meantime, members of Manalar-Kumbavaratti VSS and Ponmudi VSS have an annual income of Rs/- 5088 and Rs/- 3852 respectively. These values are divided into four classes with the interval of 1584. So, the class 1 is 864 - 2448, class 2 is 2448 - 4032, class 3 is 4033 - 5616 and class 4 is 5617 - 7200. The thematic map of dependency on NTFP in four patches is given in the fig. 5.19.

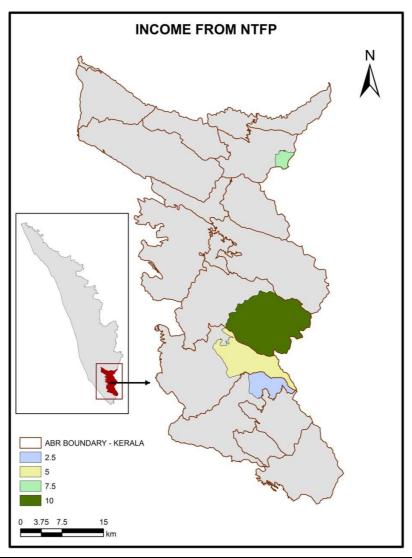


Fig 5.19: Thematic map of income from NTFP

5.5.2 Ecotourism

It is widely recognized that ecotourism can generate a variety of benefits to protected areas and local communities (Leung et al., 2003). The community benefits are actually referred to the economic benefit and the rate of this is related with the visitations. Records show that among the four sites only three are receiving visitors and Chankili did not represent in the ecotourism activities. Hence the annual income from ecotourism to the four selected communities is varying from zero to Rs/- 57840. It is highest in Ponmudi VSS which is Rs/- 57840 and lowest in Kallar, it is Rs/-38592.In the meantime Achancovil shows Rs/- 42600. These values are divided into four classes with the interval of 4812. So, the class 1 is 38592 - 43404, class 2 is 43405 - 48216, class 3 is 48217 - 53028, and class 4 is 53029 - 57840. The thematic map of dependency to ecotourism of four communities is given in the fig. 5.20.

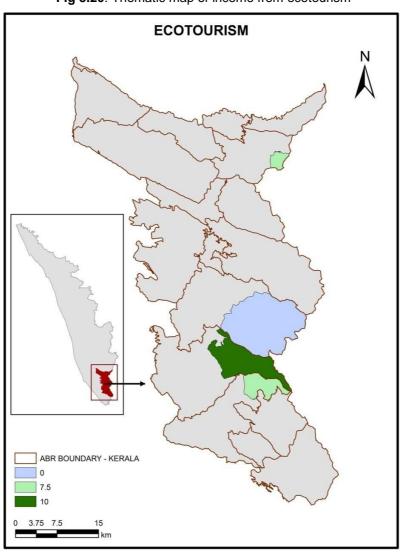


Fig 5.20: Thematic map of income from ecotourism

5.5.3 Water sources

The communities who are residing near the forest area depend on the natural water sources for their drinking and other purposes. In most of the occasions, the draught is not being experienced in such area, which indicates the role of forests in providing water to the sustenance. If a forest area comprises large proportion of catchment, it has critical role in maintaining water quality and quantity (Sulistioadi *et al.*, 2004). The communities those inhabit near or on such areas and using that water sources have a tendency to conserve such forest regions. It is evaluated by observation and discussions with communities and also divided the extent of water dependency as high, high medium, low medium and low. In four communities, Manalar Kumbavaratti VSS show high, Ponmudi and Kallar VSS is high medium and Pottamavu VSS is low medium based on the percentage of people who are depending on this. The thematic map of dependency to water sources of four communities is given in the fig. 5.21.

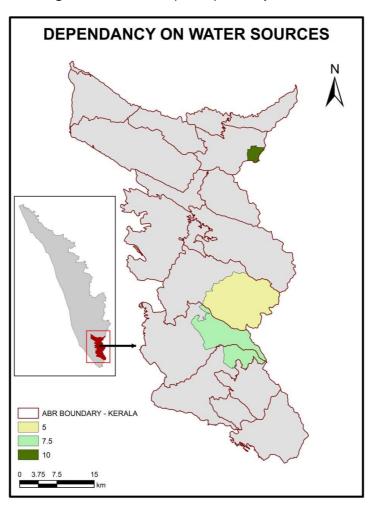


Fig 5.21: Thematic map of dependency to water sources

5.5.4 Awareness of communities

Awareness is an essential component for proper management of conservation important area and then only the sustainability of such forest become success. The evaluation of community awareness was done through personal discussions and arranged meetings. The evaluation result is divided into four groups such as high, high medium, low medium and low. Pottamavu VSS from Chankili patch has the high level of awareness whereas Manalar Kumbavaratti and Ponmudi show high medium, and Kallar are low medium. The thematic map of community awareness level of four patches is given in the fig. 5.22.

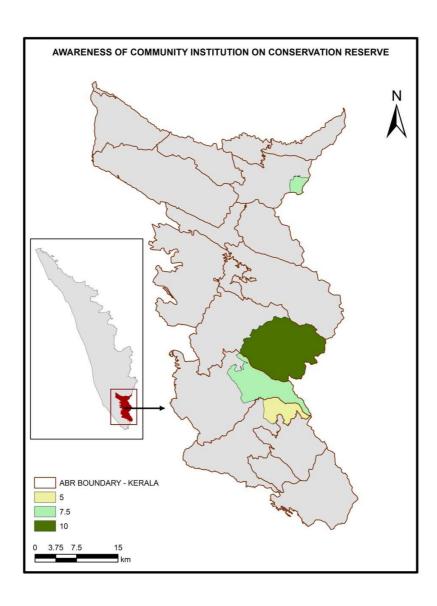


Fig 5.22: Thematic map of community awareness

5.5.5 Community attitude

The attitude of the community is one of the prerequisite for ensuring forest conservation. The weightage levels are divided into four classes such as high, high medium, low medium and low. The Pottamavu community shows high level of attitude and Manalar Kumbavaratti, Ponmudi and Kallar show high medium, low medium and low respectively. The thematic map of community attitude for conserve the forest is given in the fig. 5.23.

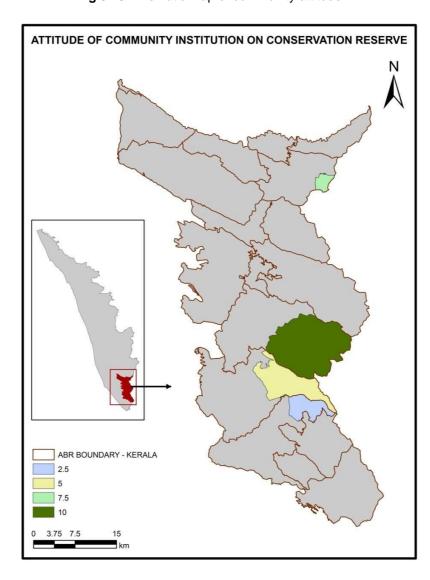


Fig 5.23: Thematic map of community attitude

5.6. Analysis and prioritization of areas as potential Conservation Reserves

Prioritization of short-listed patches was carried out as explained in the methods. The weighted sum analysis showed that Ponmudi patch shows high priority (125) and Kallar shows least priority (67.5) with biological values and, at the same time, in the social aspects, Achancovil shows high priority (40) and the Kallar shows least priority (25). Altogether Ponmudi patch comes under the first priority (160), Chankili comes under the second priority (137.5), Achancovil comes under the third priority (130) and Kallar comes under the fourth priority (92.5). The map of the prioritized patche sites for potential conservation reserves is illustrated in figure 5.24 and prioritization value of each patch is given in table 5.2.

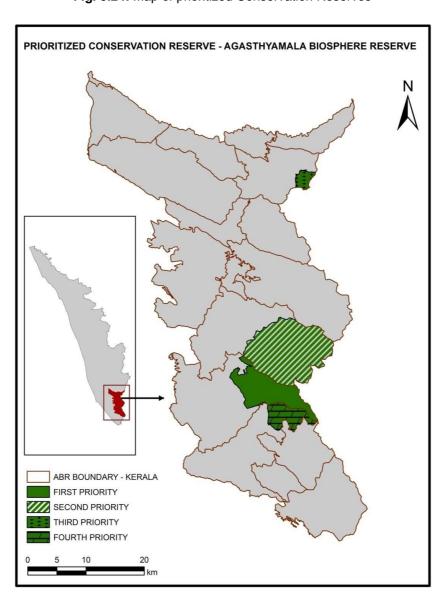


Fig. 5.24: Map of prioritized Conservation Reserves

Table 5.2: Priority list of potential Conservation Reserves patches

	Name of	Area of		Priority value		
Priority	patch	patch (km²)	Biological aspects	Social aspects	Total	
1 st priority	Ponmudi	57.175	125	35	160	
2 nd priority	Chankili	119.645	102.5	35	137.5	
3 rd priority	Achancovil	7.551	90	40	130	
4 th priority	Kallar	24.051	67.5	25	92.5	

There are thousands of protected areas existing on earth, yet the deforestation rate continues unabated both inside and out side the protected areas especially in the tropical forests (Balaguru et al., 2006). Soosairaj et al., (2007) and Balaguru et al., (2006) identified priority sites in tropical forest in India (Eastern Ghats), where they considered most of the ecological parameters and deforestation risk as criteria, at the same time ignored the community dependence. Studies of prioritization of conservation areas in the Western Ghats (Das et al., 2006) and in Kerala forest (Ramesh et al. 2002) considered the ecological factors only and also the scale of the study was not appropriate to delineate small areas for community conservation efforts. For successful sustainability, only the prioritization or identification of biologically rich forest is not enough, but management options through consultation should also be attempted.

Most of the earlier studies are limited with criteria on ecological aspects whereas ignored social dimensions in identifying potential areas of forest for community conservation. The protected area authorities have failed to a great extent in seriously attempting involvement of local people in conservation planning and management taking their concerns into mind and trying to solve the issues through better management options derived through consultations and consensus building (Melkani, 2001). The efforts carried out in this exercise tried to incorporate both social and ecological parameters in identifying a suitable area for community conservation as Conservation Reserves. Since the community and their culture and life style are highly dynamic with many external factors, further consulation is required with them in the context of Forest Right Act before implementation.

5.7. Management strategies

The management of the Conservation Reserves would be through an independent committee called Conservation Reserve Management Committee which would be constituted by the government as part of the legal provision. The Committee shall consists of representative of the forest and/or wildlife department, who shall be the Member Secretary, one representative of each Village Panchayat in whose jurisdiction the reserve is located, three representatives of NGO/VSS or JFM committee working in the area and one representative each from the Department of Agriculture and Animal Husbandry. However the overall approach of the management would be participatory in nature and there should be specific strategies for each management issues. The major management issues identified from these prioritized patches are illegal or unsustainable collection of NTFP (biological resources), protection issues such as occasional poaching and fire, littering of wastes in tourism area, etc. The specific strategies that could be implemented through these institutions are described below.

5.7.1. Collection of biological resource for livelihood

The people who live within and on the periphery of the forests are engaged in NTFP collection for their livelihood. NTFP include all goods of biological origin as well as services derived from forests or any land under similar use and exclude wood in all its form. They consist of a variety of products, which are sources of food, fibre, manure, construction materials, cosmetics, and cultural products. The users of NTFP range from local individuals to multinational companies. This market driven utilization became instrumental for the unsustainable exploitation and resulted in degrading the natural vegetation. The conservation reserves identified through this study are very rich in NTFP including edible products, medicinal plants, toiletries, tans, dyes, gums, resins, rattan, bamboo, grasses etc. Illegal and unsustainable collection of NTFP is the root cause of depletion of forest based resources. Destructive and indiscriminate use of NTFP has long-term negative consequences for forests health. Therefore establishing sustainable yields along with community monitoring processes is crucial to conservation of NTFP diversity. The strategies include

- Identify the areas where NTFPs are available and understand the distribution and extent of availability of resource species and limit the collection from identified areas only;
- Establish sustainable harvesting methods and levels. Sustainable harvesting is broadly divided into six steps (Shiva, 1995) including (1). Species selection (2). Forest inventory (3). Yield studies (4). Regeneration surveys (5). Harvest assessments and (6) Harvest adjustments;

- Incorporate sustainable harvesting method and income from NTFP in microplans of VSS and management plans of conservation reserve;
- Encourage cultivation of commercially important NTFPs and medicinal plants through VSS:
- Provide training to NTFP dependents on cultivation techniques, harvesting, control of raw material, post harvest treatments (value addition), storage, etc, and link up with NGOs to help in capacity building and entrepreneurial activities;
- Develop and improve marketing mechanisms and local NTFP enterprises and provide market information to local NTFP collectors:
- Forest Development Corporation and the Forest Department need to create separate
 marketing and extension wings responsible for developing a VSS marketing strategy and
 publish regular price lists, open collection depots catering to dispersed locations and
 establish storage facilities.

5.7.2. Effect of mass ecotourism

Tourism activities in forest area in general are referred as ecotourism which refers to ecologically sound tourism that seeks to balance the goals of biodiversity conservation with culturally sensitive, community-based tourism. It is thus by and of the people and encourages a decentralized tourism that does not require much infrastructure development. The forest patches identified in the present study may be visited by many people both local and foreign who triggered the degradation of habitat. The major impact of tourism is on littering (pollution) and sharing of resources such as water, fuel wood, etc. So the net result is habitat degradation. Associated impacts are soil erosion, fire, disturbance to wild animals for feeding, ranging etc.

The strategy would be to reduce or minimize the impacts through the following actions.

- Develop detailed ecotourism plan for the area and the focal theme should be awareness programme;
- The involvement of VSS members should be made mandatory;
- Only after completing all preliminary steps including measures to plough back certain amount of the money to the area, the project should be implemented;
- Considering the vulnerability of the area it may be discussed whether the area can be closed for certain period and what other kind of measure can be taken to minimise the effect;

 Tourism interpretation centres should be set based on themes and provide qualified guides for proper interpretations;

5.7.3. Illicit activities

The main illicit activities in the identified patches are occasional poaching, sand mining, etc. Poaching is done largely for own consumption and river sand being one of the highly demanding construction materials and the scarcity of the same has made very lucrative for the people to fetch money in the recent years. Hence, the Conservation Reserve Management Committee should have proper strategies for addressing these issues. As a broad strategy each conservation reserve should develop a comprehensive protection plan. The specificities of this plan include the following

- Review each illicit activity for its extent, areas that are prone to different levels, impact, level of protection given, etc and identify the gap in protection. The monthly reports can be used for reviewing the status of illicit activities;
- Prepare a calendar for effective field combating. Constitute teams for combating on rotation basis with necessary gadgets. Implement and ensure an appropriate documentation system which should help in monitoring the illegal activities. Patrolling schedules need to be developed for difficult areas, which should indicate minimum coverage of certain routes/points over a period of time. Providing logistics such as free ration while patrolling may be thought off;
- Enhance the capacity of patrolling team through frequent refresher training;
- Coordinate the protection activities with different other enforcement agencies;
- Communication facilities need to be developed to the extent that each patrol team composed of VSS is able to communicate with the nearest enforcement agencies;
- Organize an intelligence network. The patrol team should develop intelligent network outside the forest area so that relevant information could be collected as early as possible;
- A mechanism of penalizing the members of the VSS and other staff responsible for wild animal poaching is needed once their negligence is confirmed through proper enquiry.
 The already developed mechanisms in case of commercially valuable trees may be extended to wild animals too if the negligence is confirmed;
- In order to combat the problems due to illicit distilling in the forest area, the VSS
 members and patrol team should identify the area prone to illicit brewing and more
 frequent field perambulation may be conducted;

- The people who are involved in illicit brewing may be brought to the mainstream activities of protection;
- Create awareness among local people regarding the multidimensional effects of brewing in the forests;
- In case of sand mining the VSS should identify the streams (rivers) where sand mining can be allowed since sustainable level of sand mining is allowed in the forests;
- Assess the yearly quantity that can be auctioned;
- Entrust the regulation of sand mining to people's committee through VSS and ensure mutual commitment from VSS on protection of stream banks for which a portion of the revenue generated may be used;
- Develop a proper plan for sand mining detailing season, timing, quantity to be allowed, access rules, etc
- Control the traffic (a common place for auctioning like timber yard) from going to the riverside

5.7.4. Human-wildlife conflicts

Almost all the non-PAs of Agasthyamalai region contain human settlements/ habitations either inside or on the fringes of the forests, which are leading to degradation of surrounding habitats. Animals such as elephants, gaur, sambar, and wild boar cause extensive damage to the crops and other properties of the settlement. Presently, the Government of Kerala has made orders which permit killing of wild boar that damage the crops and other properties. The traditional tolerance among the people who live in the forest areas or its adjacent is fast disappearing and people have become increasingly antagonistic. As a result, the people tend to kill the animals either by poisoning or other means like keeping crackers in the fruits. At present, the Forest department provides compensation for the damage to crop and properties, cattle lifting, by schedule animals like elephants, tiger, leopard, guar, etc. The major strategy is that mitigate human-wildlife conflicts through participatory approach and the specific activities include.

- Arrest degradation of the patches due to forest fire and other causes and improve the habitats through appropriate measures;
- Identify innovative techniques like use of capsicum repellent and other means to chase the animals;
- Motivate the locals to change their land-use pattern, cropping pattern, etc. Make consensus
 on not raising agriculture in the traditional route of the animals and close vicinity of the
 forests:
- Try to avoid planting of tapioca, banana, rice, etc near to the forests;

Encourage stall-feeding to check cattle lifting.

5.7.5. Fire

The effect of fire depends on the type of vegetation, frequency and intensity of fire and seasons of burning. Many weeds managed to establish a strong foothold even after fire with the help of fire resistant underground structures. Studies had shown that, a lot of species became either threatened or extinct due to fire. At present, fire is managed with the help of fire lines and appointment of firewatchers during the season. Participatory fire management system was introduced by the department in most of the forest divisions in Kerala. The main strategy towards fire protection in the conservation reserve is to minimize the fire incidence through participatory approach. The specific actions are

- Identify the fire prone areas in the reserve based on earlier records of fire incidence and proximity of settlements/roads/ etc;
- Highlight issues of fire control and protection through the meetings of VSS and SHG;
- Make sure that all the fire preventive measures such as fire line or early burning if it is practised have been completed before the fire season;
- Equip each conservation reserve management committee with necessary equipments;
- Conduct strong and intensive awareness creation among local people about the impacts
 of fire.

The above mentioned strategies and specific actions are related to some most prominent management issues in any forest patches. The Conservation Reserve being accorded a PA status need to be carefully managed beyond the mentioned activities. There could be other activities such as afforestation or soil and moisture conservation activities for the improvement of the wildlife habitat. Such aspect also needs to be implemented through participatory manner in order to attain the overall objective of conservation.

Chapter VI

CONCLUSION

Heterogeneity and specialization of the environmental factors in one region to other region are the preferring aspects of the biodiversity and endemism. The high diversity of the native, endemic, economically important and threatened species is the indication of high conservation and socio-economic values of the forest. Climate change and reduced tolerance limit of plants from polluted environment are highlighting the necessity of older extent of forest and their protection for sustainability. Among the three regions of the Western Ghats, the southern Western Ghats is one of the richest abodes of tropical moist forests in India and large portion of this region falls within Kerala. Considering immense conservation potential of this region, part of the area has been declared as 'Agasthyamalai Biosphere Reserve' since 2001. In Kerala part of ABR, the total area covered by PAs is only 20.69% which may not be sufficient enough to ensure the sustenance of the entire spectrum of flora and fauna. PAs in the ABR are embedded in a human-dominated landscape and hence are subject to intense land-use conflicts. The present study shows significant level of ecological features present outside PAs and higher percentage of endemism is noted in some groups when compared with the whole of the Western Ghats. The gap analysis study has also identified that more conservation important areas are lying outside the existing PA network as these existing PAs have more often been demarcated using ad hoc criteria.

In order to identify conservation important areas, most of the studies used criteria, either based on ecological principles or partially on social dimensions. No comprehensive study was carried out with both social and ecological parameters. Moreover, the scale of the study is also very important since the implementation of the output would be more effective by entrusting the management on the local communities. In this context, a comprehensive criteria developed through interactive process would be of much relevance in delineating the potential conservation reserves. The criteria were applied at two levels, i.e., first level, based on satellite data and literatures, and second level, based on primary data collected from the short-listed patches. As a result of the application of first level criteria, four patches of forests in the Kerala part of ABR were short-listed. Primary data was collected from these patches and the same has been used as 21 input parameters at second level in which, 16 coming under ecological values and 5 under social indication. The weighted overlay analysis shows that Ponmudi patch scored maximum weightage and considered to be a high priority area due to highest indication of biological parameters,

CEPF – ATREE CED

57

presence of unique ecosytem and social parameters when compared with other patches. Achancovil and Chankili patches got same weightage come under the second priority area and Kallar shows least priority, due to the lowest values of ecological and social parameters. All the criteria used for identification and prioritization of the potential areas as Conservation Reserves are feasible as well as covering the maximum possible ecological and social parameters. So, the identified areas are potential forest regions to manage as Conservation Reserves. Protection of these patches with community participation would ensure better management of forests for sustainability. The methodology and criteria used in this study is still largely indicative in nature, hence larger discussion is necessary for further improvement.

References

- Acharya, T.P. 2000. Conservation of non-timber forest products (NTFPs) in Humla, Nepal: A case study of Rudikot (Margor) region for Biodiversity conservation. In: Proceedings of the Third Regional Workshop of Community Based NTFP Management, Kathmandu, Nepal. South and East Asian Countries NTFP Network (SEANN). pp. 264-271.
- Arnold, J.E.M., Pérez, M.R. 2001. Can non-timber forest products match tropical forest conservation and development objectives?, *Ecological Economics* 39: 437–447.
- Ahmed, M.F. 1997. *In-depth country study: India*. FAO Regional Office for Asia and the Pacific, Bangkok.
- Bahuguna, V.K. 2002. Forest policy initiatives in India over the last few years. In Proceedings of the Forest Policy Workshop 22 -24 January, 2002, Kuala Lumpur.
- Balaguru, B., Britto, S.J., Nagamurugan, N., Natarajan, D. and Soosairaj, S. 2006. Identifying conservation priority zones for effective management of tropical forests in Eastern Ghats of India. *Biodiversity and Conservation* 15:1529–1543.
- Bhattarai, N.K. and Croucher, J. 1996. Viability of local commercialization of non-timber forest products as a strategy for promoting Biodiversity conservation. In: P.K. Jha, G.P.S. Ghimire, S.B. Karmacharya, S.R. Baral and P. Lacoul (Eds.). Environment and biodiversity in the context of South Asia. Ecological Society, Kathmandu, Nepal. pp. 346-353.
- Bibby, C.J. 1998. Selecting area for conservation. In: Sutherland, W.J. (Ed.), Conservation and Action. Blackwell Science.
- Buyinza, M. and Acobo. T. 2009. Eco-tourism for environmental conservation and community livelihoods around Bundongo forest in Masindi District, Western Uganda, *Research Journal of Applied Sciences* 4: 160-165.
- Cabeza, M., Moilanen, A. 2001. Design of reserve networks and the persistence of biodiversity. *Trends in Ecology and Evolution* 16: 242–248.

- Callicott, J.B., Rozzi, R., Delgado, L., Monticino, M., Acevedo, M. and Harcombe, P. 2007. Biocomplexity and conservation of biodiversity hotspots: three case studies from the Americas. *Philosophical Transactions of the Royal Society* B. 362: 321-333.
- Chape, S., Harrison, J., Spalding, M. and Lysenko, I. 2005. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. *Phil. Trans. R. Soc. B* 2005 360: 443-455.
- Csuti, B., Polasky, S., Williams, P.H., Pressy, R.L., Camm, J.D., Kershaw, M., Kiester, A.R., Downs, B., Hamilton, R., Huso, M., Sahr, K. 1997. A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. *Biological Conservation* 80: 83–97.
- Daniels, R.J.R., Joshi. N.V. and Gadgil. M. 1992. On the relationship between bird and woody plant species diversity in the Uttara Kannada district of south India, *Ecology* 89: 5311-5315.
- Das, A., Krishnaswamya, J., Kamaljit, S.B., Kirana, M.C., Srinivas, V., Kumarc, N.S., Karanthc, K.U. 2006. Prioritisation of conservation areas in the Western Ghats, India. *Biological Conservation* 133: 16–31.
- Dawson, K.J. 1996. Interior and exterior land use as factors in landscape biodiversity from case studies. In: Szaro R.C. and Johnston D.W. (eds), Biodiversity and managed landscapes—Theory and Practice. Oxford University Press, Oxford, pp. 514–530.
- Dubey, P.C., Mishra, S.N. and Tiwari. A. 2007. Loss of biodiversity with reference to important medicinal plants in Vindhya regions and their thread assessment, *Journal of Tropical Forestry* 23: 105-127.
- Eken, G., Bennun, L., Brooks, T.M., Darwall, W., Fishpool, L.D.C., Foster, M., Knox, D., Langhammer, P., Matiku, P., Radford, E., Salaman, P., Sechrest, W., Smith, M.L., Spector, S., Tordoff, A. 2004. Key biodiversity areas as site conservation targets. *Bioscience* 54: 1110–1118.

- Erkut, E. and Tarimcilar, M. 1991. On sensitivity analysis in the analytic hierarchy process IMA Journal of Management Mathematics 3: 61-83.
- FAO, 2001. Global forest resources assessment: main report. FAO, Rome.
- Gaston, K.J., Pressey, R.L. and Margules, C.R. 2002. Persistence and vulnerability: retaining biodiversity in the landscape and in protected areas. *J. Biosci.* (Suppl. 2) 27: 361–384.
- Gokhale. Y. 2004 Reviving Traditional Forest Management in Western Ghats Study in Karnataka, *Economic and Political Weekly* July 31.
- Harshaw, H.W., Sheppard, S.R.J. and Jeakins, P. 2009. Public attitudes toward sustainable forest management: Opinions from forest-dependent communities in British Columbia.
 BC. Journal of Ecosystems and Management 10: 81–103.
- Hubbell, S.P. and Foster, R.B., 1985. In *Community Ecology* (eds Case, T. J. and Diamond, J.), Harper & Row, New York, pp. 314–329.
- Hunter, M.L. (Ed.), 1999. *Maintaining Biodiversity in Forest Ecosystems*. Cambridge University Press, Cambridge, England, 695 pp.
- Kangas, J., Loikkanen, T., Pukkala, T. and Pykalainen, J. 1996. A participatory approach to tactical forest planning. *Acta Forestalia Fennica* 251: 1–24.
- Kareiva, P. and Marvier, M. 2003. Conserving biodiversity coldspots. *American Scientist* 91: 344–351.
- Kati, V., Devillers, P., Dufrene, M., Legakis, A., Vokou, D. and Lebrun, P. 2004. Hotspots, complementarity or representativeness? Designing optimal small-scale reserves for biodiversity conservation. *Biodiversity Conservation* 120: 471–480.
- Keßler, P.J.A., Bos, M., Sierra Daza, S.E.C., Kop, A., Willemse, L.P.M., Pitopang, R. and Gradstein, S.R. 2002. Checklist of woody plants of Sulawesi, Indonesia. *Blumea, Supplement* 14: 1–160.

- Keisler, J.M. and Sundell, R.C. 1997. Combining multi-attribute utility and geographic information for boundary decision: an application to park planning. *J. Geog. Info. Decision Anal.* 1: 101–118.
- Kessler, M., P. J. A. Keßler, S. R. Gradstein, K. Bach, M. Schmull, and R. Pitopang. 2005. Tree diversity in primary forest and different land use systems in Central Sulawesi, Indonesia. *Biodiversity and Conservation*, 14: 547–560.
- Kirkpatrick, J.B., 1983. An iterative method for establishing priorities for selection of nature reserves: An example from asmania. *Biological Conservation* 25: 127–134.
- Knight, R. L. 1999. Private lands: the neglected geography. Conservation Biology 13:223-224.
- Kotwal, P.C, Omprakash, M.D, Kandari, L.S, Mali, K.P, Badyal, M, Mishra, A. 2008. Sustainable forest management through community participation. *Current Science* (95) 8: 1015 1017.
- Kumar, A., Walker, S., Molur, S. 2000. Prioritisation of endangered species. In: Singh, S., Sastry, A.R.K., Mehta, R., Uppal, V. (eds.) Setting biodiversity priorities for India World Wide Fund for Nature, India, New Delhi. pp. 341-386.
- Laurance, W. F and Bierregaard, J. R. O., 1997. *Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities.* The University of Chicago Press, Chicago, 616 p.
- Leung, Yu-Fai and Lee, J. 2003. Recreation Ecology and Visitor Carrying Capacity Management: Implications for Protected Areas in East Asia, Korean J. Ecol., 26: 53-58.
- Lindenmayer, D.B., Franklin, J.F., Fischer, J., 2006. Conserving forest biodiversity: a checklist for forest and wildlife managers. *Biological Conservation* 129: 511–518.
- Mader. R. 2002. Latin American ecotourisms: What is it?, Curr. Issues in Tourism, 5: 272-278.
- Malczewski, J., Moreno-Sanchez, R., Bojorquez-Tapia, L.A., Ongay-Delhumeau, 1997 Multiple criteria group decision making model for environmental conflict analysis in the Cape Region. *Mexico. J. Environ. Planning Manage*. 40: 349–374.

- Malhotra, K C, Y Gokhale, S Chatterjee and S Srivastava, 2001, *Cultural and Ecological Dimensions of Sacred Groves in India*, Indian National Science Academy, New Delhi and Indira Gandhi Rashtriya Manav Sangrahalaya, Bhopal.
- Man S. Rana and S. S. Samant, 2009. Prioritization of habitats and communities for conservation in the Indian Himalayan region: a state-of-the-art approach from Manali Wildlife Sanctuary. *Current Science*, 97: 326-335.
- Manju, C. N, Rajesh K. P. and Madhusoodanan. P. V. 2009. Contribution to the Bryophyte Flora of India: *Agasthyamalai* Biosphere Reserve in Western Ghats, *Taiwania*, 54: 57-68.
- Margules, C.R, Pressey, R.L, Williams, P.H. 2002. Representing biodiversity: data and procedures for identifying priority areas for conservation. *J. Biosci.* 27: 309–326.
- Masuda, M, Mishiba, J And Dhakal, M. 2005. Implementation of participatory forest management in Kerala, India. *Tropics* 14: 323 333.
- McNeely, J. A. 1998. How protected areas can respond to the changing nature of society. In Protected areas in the 21st century: from islands to networks. pp. 189–202, Gland, Switzerland: IUCN.
- Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. *Nature*, 403: 853–858.
- Nair, S. C. 1991. The Southern Western Ghats: A biodiversity conservation plan. INTACH, New Delhi. Rodgers, W.A., Panwar, H.S. and Mathur, V.B. 2000. Wildlife Protected Area Network in India: A review (Executive Summary). Wildlife Institute of India, Dehradun.
- Nayar, M.P., 1996. "Hot Spots" of Endemic plants of India, Nepal and Bhutan. Tropical Botanic Garden and Research Institute, Thiruvananthapuram, India.
- Nayar, M.P., Sastry, A.R.K. (eds.) (1987-90): Red data book of Indian plants. Botanical Survey of India, Deep Printers, Culcutta. Vol. I, II, III.

- Nkembi, L.N. 2003. Participatory forest conservation and sustainable livelihoods: Banyang-mbo wildlife sanctuary, XII World Forestry Congress, Quebec City, Cananda.
- Noss, R. 1995. *Maintaining ecological integrity in representative reserve networks*. World Wildlife Fund, Toronto.
- Pandé, S.K. & Udar, R. 1957. Genus *Riccia* in India. I. A reinvestigation of the taxonomic status of the Indian species of *Riccia*. *Journal of the Indian Botanical Society*, 36: 564-579.
- Parthasarathy N. 1999. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in the southern Western Ghats, India. *Biodiversity and Conservation*, 8: 1365–1381.
- Pereira, J.M.C., Duckstein, L., 1993. A multiple criteria decision making approach to GIS-based land suitability evaluation. *Int. J. Geog. Info. Sys.* 7: 407–424.
- Phua, M.H, Minowa, M. 2005. A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: a case study in the Kinabalu Area, Sabah, Malaysia *Landscape and Urban Planning* 71: 207–222.
- Pimm, S.L., Lawton, J.H., 1998. Planning for biodiversity. Science 79: 2068–2069.
- Possingham, H. P., Andelman, S. J., Burgman, M. A., Medellin, R. A., Master, L. L. and Keith, D. A. 2002. Limits to the use of threatened species lists. *TREE* 17: 503–507.
- Praveen. J and Nameer. PO. 2009. Monitoring bird diversity in Western, Ghats of Kerala, *Current Science*, 69: 1390-1395.
- Prendergast, J.R., Quinn, R.M., Lawton, J.H. 1999. The gaps between theory and practice n selecting nature reserves. *Conservation Biology* 13: 484-492.
- Pressey, R. L. 1997. Priority conservation areas: towards an operational definition for regional assessments. Pages 337–357 in J. J. Pigram and R. C. Sundell, editors. National parks and protected areas: selection, delimitation and management. University of New England, Centre for Water Policy Research, Armidale, Australia.

- Pressey, R.L., Humphries, C.J., Margules, C.R., Vane-Wright, R.I., illiams, P.H., 1993. Beyond opportunism: Key principles for systematic reserve selection. *Trends in Ecology and Evolution* 8: 124–128.
- Quigley, T. M., Haynes, R. W. and Graham, R. T. 1996. Integrated scientific assessment for ecosystem management in the interior Columbia basin and portions of the Klamath and Great Basins. U.S. Forest Service, Pacific Northwest Research Station, Gen. Tech. Rep. PNW-GTR-382, Portland.
- Ramesh, B.R, Seen, D.L, Karunakaran, P.V, Balasubramanian, M, Sankar, M. 2003.

 Conservation Review for Rationalization of Protected Area Network in Kerala, Final Report, French Institute of Pondicherry.
- Ramesh, B.R., Karunakaran, P.V., Balasubramanian, M., Danny O.L. and Kaler, O.P. 2002. *Biodiversity Conservation Strategy and Action Plan for Kerala*. French Institute of Pondicherry, Pondicherry.
- Raven, P.J., N.T.H. Holmes, F.H. Dawson, P.J.A. Fox, M. Everard, I.R. Fozzard, and K.J. Rowen. 1998. *River Habitat Quality: The physical character of rivers and streams in the UK and Isle of Man.* Environment Agency. ISBN1 873760 42 9. Bristol, England.
- Reid, W.V., 1998. Biodiversity hotspots. Trends in Ecology and Evolution 13: 275–280.
- Robbins, C.S., Dawson, D.K. and Dowell, B.A., 1989. Wildlife Monographs, 103, the Wildlife Society.
- Rodgers, W.A., Panwar, H.S. and Mathur, V.B. 2000. Wildlife Protected Area Network in India: A review (Executive Summary). Wildlife Institute of India, Dehradun.
- Rodgers, W.A. and Panwar, H.S. 1988. *Planning a Wildlife Protected Area Network in India*: Vol I & II. Report. Wildlife Institute of India, Dehradun.
- Rodrigues, A.S.L., Gregory, R.D., Gaston, K.J., 2000. Robustness of reserve selection procedures under temporal species turnover. Proceedings of the Royal Society of London B. *Biological Sciences* 267: 49–55.

- Salomona. A.K, Ruesinka. J.L and DeWreedeb. R.E. 2006. Population viability, ecological processes and biodiversity: Valuing sites for reserve selection, *Biological Conservation* 128: 79-92.
- Saunders, D.A.; Hobbs, R. J., and Margules, C. R. 1991. Biological consequences of ecosystem fragmentation: a review. *Conservation Biology*. 5: 18-32.
- Schulze C.H., Waltert M., Kessler P.J.A., Pitopang R., Shahabuddin, Veddeler D., Muhlenberg M., Gradstein S.R., Leuschner C., Steffan-Dewenter I. & Tscharntke T. 2004. Biodiversity indicator groups of tropical land-use systems: comparing plants, birds and insects. *Ecological Applications*, 14: 1321-1333.
- Serrao E.A.S. and Homma A.K.D. 1993. Sustainable Agriculture and the Environment in the Humid Tropics. National Academy Press, Washington, DC, pp. 265–351.
- Shiva, M.P., 1995. Collection, Utilization and Marketing of Medicinal Plants from Forests of India. In P.B. Durst and A. Bishop (eds.) Beyond Timber: Social, Economic and Cultural Dimensions of Non-Wood Forest products in Asia and the Pacific. Proceedings of a Regional Expert Consultation held in Bangkok, 28 November to 2 December 1994. FAO/RAP, Bangkok. pp. 271-281.
- Singh, D.K. 2001. *Diversity in Indian Liverworts: Their Status, Vulnerability and Conservation*. In: Nath, V. & A.K. Asthana (ed.), *Perspectives in Indian Bryology*, 325-354. Dehra Dun.
- Soosairaj, S, John Britto, S, Balaguru, B, Nagamurugan, N, Natarajan, D. 2007. Zonation of Conservation Priority Sites for Effective Management of Tropical Forests in India: A Value-Based Conservation Approach. *Applied Ecology and Environmental Research* 5(2): 37-48.
- Stork, N.E., Boyle, T.J.B., Dale, V., Eeley, H., Finegan, B., Lawes, M., Manokaran, N., Prabhu, R. and Soberon, J. (1997) Criteria and Indicators for Assessing the Sustainability of Forest Management: Conservation of Biodiversity. CIFOR working paper 17. CIFOR, Bogor, Indonesia
- Sulisticadi, Y.B., Hussin, Y.A. and Sharifi, M.A. 2004. Identification of high conservation value forest HCVF in natural production forest to support implementation of SFM certification in

- Indonesia using remote sensing and GIS. In: ISPRS 2004: proceedings of the XXth ISPRS congress: Geo-imagery bridging continents, 12-23 July 2004, Istanbul, Turkey. Comm. VII PS WG VII/2 pp. 164-169.
- Warner, F. 1982. *Indo Swedish Forestry Programme II*: 1982-83 to 1986-87.Background Document. Swedish Embassy Dev Cooperation office. New Delhi,1-92.
- Whitecomb, R.F., Lynch, J.F., Opler P.A and. Robbins, S.C., 1976. Science, 193: 1030-1032.
- Williams, P., Gibbons, D., Margules, C., Rebelo, A., Humphries, C., Pressey, R., 1996. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology, 10, 155–174.
- Winston, M.R., Angermeier, P.L., 1995. Assessing conservation value using centers of population density. *Conservation Biology* 9: 1518–1527.
- Wright, M. G. & Samways, M. J. 1998. Insect species richness tracking plant species richness in a diverse flora: gall-insects in the Cape Floristic Region, South Africa. *Oecologia* 115: 427-433.
- Zare. S, Fami. HS and Namiranian. M. 2008. People Participation, an Undeniable Necessity for Conserving Forest Areas of Arasbaran Region in Iran, *American Journal of Agricultural* and Biological Sciences 3 (4): 673-680.

Annexure 1 (a)

List of scientific name, common name, endemism and RET status of birds in Ponmudi patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Accipiter badius badius (Gmelin)	Shikra		Lc
2.	Accipiter virgatus besra Jerdon	BesraSparrowHawk		Lc
3.	Acridotheres fuscus mahrattensis (Sykes)	Jungle Myna		Lc
4.	Acridotheres tristis tristis (Linnaeus)	Common Myna		Lc
5.	Aegithiatiphia multicolor (Gmelin)	Commonlora		
6.	Alcedo atthis taporbana Kleinschmidt	SmallBlueKingfisher		
7.	Anthus nilghiriensis Sharpe	Nilgiri Pipit	Е	NT
8.	Anthus richardi Vieillot	Richard's Pipit (M)		Lc
9.	Anthus similis travancoriensis Ripley	Brown Rock Pipit		
10.	Ardeola grayii grayii (Sykes)	Indian Pond Heron		Lc
11.	Artamus fuscus	AshyWoodswallow(Ashy Swallow-Shrike)		Lc
12.	Athene brama brama (Temminck)	SpottedOwlet		Lc
13.	Bubo nipalenis nipalensis Hodgson	ForestEagleOwl		Lc
14.	Buceros bicornis homrai Hodgson	GreatPiedHornbill		NT
15.	Caprimulgus affinis monticolus Franklin	Franklin'sNightjar		Lc
16.	Caprimulgus asiaticus asiaticus	Common Indian Nightjar		Lc
17.	Caprimulgus atripennis Jerdon	Jerdon'sNightjar		Lc
18.	Caprimulgus indicusindicus Latham	IndianJungleNightjar		Lc
19.	Celius brachyurus jerdonii (Malherbe)	RufousWoodpecker		Lc

		_		
20.	Centropus sinensis parroti Stresemann	GreaterCoucal		Lc
21.	Centropus toulou bengalensis (Gmelin)	LesserCoucal		Lc
22.	Chalcophaps indica indica (Linnaeus)	EmeraldDove		
23.	Chloropsis aurifrons frontalis (Pelzeln)	Gold-frontedChloropsis		Lc
24.	Chloropsis cochinchinensis jerdoni (Blyth)	Jerdon'sChloropsis		Lc
25.	Chrysocolaptes lucidus	Greater Golden-backed Woodpecker		Lc
26.	Collocalia unicolor (Jerdon)	IndianEdible-nestSwiftlet		Lc
27.	Columba elphinstonii (Sykes)	NilgiriWoodPigeon	Е	V
28.	Columba livia intermedia Strickland	BlueRockPigeon		Lc
29.	Coracias benghalensis indicaLinnaeus	IndianRoller		Lc
30.	Coracin amelanoptera sykesi	Black-headed Cuckooshrike		
31.	Corvus macrorhynchos culminatus Sykes	Jungle Crow		Lc
32.	Corvus splendensprotegatus Madaras	HouseCrow		Lc
33.	Cuculus micropterus micropterus Gould	IndianCuckoo		Lc
34.	Cypsiurus balasiensis (J.E.Gray)	AsianPalmSwift		Lc
35.	Dendrocitta leucogastra	White-belliedTreepie	Е	Lc
36.	Dendrocitta vagabundaparvula	Indian Treepie		Lc
37.	Dicaeum erythrorhynchos	Tickell's Flowerpecker		Lc
38.	Dicrurus paradiseusparadiseus	Greater Racket-tailed Drongo		Lc
39.	Dinopium benghalense	Lesser Golden-backed Woodpecker		Lc
40.	Dinopium javanense	Common Golden-backed Woodpecker		Lc
41.	Ducula aeneapusilla (Blyth)	GreenImperialPigeon		Lc
42.	Ducula badiacuprea (Jerdon)	MountainImperialPigeon		Lc
42.	Bucula badiacapica (scruoti)	MountainImperialPigeon		Lc

43.	Elanus caeruleusvociferus (Latham)	Black-shoulderedKite	Lc
44.	Eudynamys scolopacea scolopacea (Linnaeus)	AsianKoel	Lc
45.	Eurostopodus macrotis (Hume)	Great-EaredNightjar	Lc
46.	Eurystomus orientalis laetior Sharpe	OrientalBroad-billedRoller	
47.	Falco naumanni Fleischer	Lesser Kestrel (M)	V
48.	Falco peregrinus peregrinator Sundevall	Shahin Falcon	Lc
49.	Falco tinnunculus tinnunculus Linnaeus	CommonKestrel	Lc
50.	Gallus sonneratii Temminck	GreyJunglefowl	Lc
51.	Glaucidium radiatum malabaricum (Blyth)	JungleOwlet	Lc
52.	Gracula indica (Cuvier)	Southern Hill Myna	
53.	Halcyon pileata(Boddaert)	Black-cappedKingfisher	Lc
54.	Halcyon smyrnensis fusca(Boddaert)	White-breastedKingfisher	Lc
55.	Haliastur indusindus (Boddaert)	BrahminyKite	Lc
56.	Harpactes fasciatus malabaricus (Gould)	MalabarTrogon	Lc
57.	Hemicircus canente canente (Lesson)	Heart-spottedWoodpecker	Lc
58.	Hemiprocne coronata (Tickell)	CrestedTreeSwift	Lc
59.	Hieraaetus fasciatus fasciatus (Vieillot)	Bonelli'sEagle	
60.	Hieraaetus pennatus (Gmelin)	Booted Eagle	Lc
61.	Hieraaetus kieneriikienerii (E.Geoffroy)	Rufous-belliedEagle	
62.	Hierococcyx varius varius Vahl	BrainfeverBird	
63.	Hirundapus gigantean indica	Brown-backed Needletail Swift.	Lc
64.	Hirundo concolor concolor Sykes	Dusky Crag-Martin	Lc
65.	Hirundo daurica nipalensis	Red-rumped Swallow (M)	Lc

	Hodgson			
66.	Hirundo smithii filfera Stephens	Wire-tailed Swallow		Lc
67.	Hypsipetes indicus indicus (Jerdon)	Yellow-browedBulbul		
68.	Hypsipetes leucocephlus ganeesa (Sykes)	BlackBulbul		Lc
69.	Ictinaetus malayensis perniger (Hodgson)	BlackEagle		Lc
70.	Irena puellapuella (Latham)	AsianFairyBlueBird		Lc
71.	Ketupa zeylonensis leschenault (Temminck)	BrownFishOwl		Lc
72.	Lanius cristatus cristatus Linnaeus	BrownShrike		Lc
73.	Loriculus vernali svernalis (Sparrman)	IndianHangingParrot		Lc
74.	Megalaima haemacephala indica (Latham)	CoppersmithBarbet		Lc
75.	Megalaima rubricapilla (Blyth)	Crimson-throated Barbet		Lc
76.	Megalaima viridis (Boddaert)	White-cheekedBarbet		Lc
77.	Merops leschenaultil Vieillot	Chestnut-headed Bee-eater		Lc
78.	Merops orientalis orientalis Latham	SmallBee-eater		Lc
79.	Merops philippinus philippinus Linnaeus	Blue-tailedBee-eater (M)		Lc
80.	Milvus migransgovinda Sykes	BlackKite		Lc
81.	Myiophonus horsfieldii horsfieldii	Malabar Whistling Thrush		
82.	Nectarinia asiatica asiatica (Latham)	PurpleSunbird		Lc
83.	Nectarinia minima (Sykes)	SmallSunbird	E	Lc
84.	Nectarinia zeylonica flaviventris	Purple-rumped Sunbird		Lc
85.	Ninox scutulata hirsute (Temminck)	BrownHawkOwl		Lc
86.	Nycticorax nycticorax (Linnaeus)	Black-crowned Night Heron		Lc
87.	Nyctyornis athertoni	Blue-bearded Bee-eater		Lc

	(I = ==1; = = 0.0 = H= ;)	T		
	(Jardine&Selby)			
88.	Ocyceros griseus (Latham)	MalabarGreyHornbill	Е	Lc
89.	Otus bakkamoena bakkamoena Pennant	CollaredScopsOwl		Lc
90.	Otus sunia (Hodgson)	Oriental Scops Owl		Lc
91.	Pericrocotus flammeus flammeus (Forster)	Scarlet Minivet		Lc
92.	Pernis ptilo rhynchusruficollis Lesson	Oriental Honey Buzzard		Lc
93.	Pholidus badius ripleyi Hussain & Khan	Oriental Bay Owl		
94.	Picumnus innominatus malayorum Hartert	SpeckledPiculet		Lc
95.	Pitta brachyuran brachyuran (Linnaeus)	IndianPitta (M)		Lc
96.	Pomatorhinus horsfieldii Harington	IndianScimitarBabbler		Lc
97.	Prinia socialis socialis Sykes	AshyPrinia		Lc
98.	Psittacula krameri manilensis (Bechstein)	Rose-ringedParakeet		Lc
99.	Pycnonotus cafer cafer (Linnaeus)	Red-ventedBulbul		Lc
100.	Pycnonotus jocosus fuscicaudatus (Gould)	Red-whiskeredBulbul		Lc
101.	Pycnonotus melanicterus gularis (Gould)	Ruby-throated Bulbul		Lc
102.	Saxicolaca prata nilgiriensis Whistler	PiedBushchat		
103.	Schoenicola platyura	Broad-tailedGrassbird	Е	V
104.	Spilornis cheelamelanotis (Jerdon)	CrestedSerpent-Eagle		Lc
105.	Spizaetu scirrhatus cirrhatus (Gmelin)	ChangeableHawk-Eagle		
106.	Sturnus malabaricus malabaricus (Gmelin)	Grey-headedStarling		Lc
107.	Surniculus lugubris (Horsfield)	Drongo Cuckoo		Lc
108.	Tachymarptis melbanubifuga	AlpineSwift		Lc

	Koelz			
109.	Treron bicincta bicincta (Jerdon)	Orange- breastedGreenPigeon		Lc
110.	Treron phoenicoptera (Blyth)	Yellow-footed Green Pigeon		Lc
111.	Treron pompadora affinis (Jerdon)	PompadourGreenPigeon		Lc
112.	Turdoides affinis affinis (Jerdon)	White-headedBabbler		
113.	Turdoides striatus malabaricus (Jerdon)	Jungle Babbler		Lc
114.	Tyto albastertens Hartert	BarnOwl		Lc
115.	Zoonavena sylvatica (Tickell)	White- rumpedNeedletailSwift		Lc
Total	115		6	99

Annexure1 (b)

List of scientific name, common name, endemism and RET status of butterflies in Ponmudi patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Abisara echerius	Plum Judy		
2.	Acraea violae	Tawny Coster		
3.	Actolepis puspa	Common Hedge Blue		
4.	Aeromachus dubius	Dingy Scrub-Hopper	E	
5.	Aeromachus pygmaeus	Pygmy Grass-/Scrub- Hopper		
6.	Appias indra	Plain Puffin		
7.	Appias lalage	Spot Puffin		
8.	Arnetta mercara	Coorg Forest Hopper	E	
9.	Athyma nefte	Colour Sergeant		
10.	Athyma perius	Common Sergeant		
11.	Athyma ranga	Blackvein Sergeant		
12.	Badamia	Brown Awl		

	exclamationis		
13.	Baracus vittatus	Hedge/Hampson's Hedge- Hopper	E
14.	Bibasis sena	Orangetail Awl	
15.	Borbo bevani	Bevan's Swift	
16.	Caleta caleta	Angled Pierrot	
17.	Caltoris canaraica	Kanara Swift	E
18.	Catopsilia pomona	Common Emigrant	
19.	Catopsilia pyranthe	Mottled Emigrant	
20.	Celaenorrhinus leucocera	Common Spotted Flat	
21.	Celaenorrhinus ruficornis	Tamil Spotted Flat	E
22.	Cepora nadina	Lesser Gull	
23.	Cepora nerissa	Common Gull	
24.	Cethosia nietneri	Tamil Lacewing	
25.	Charaxes bernardus	Tawny Rajah	
26.	Cheritra freja	Common Imperial	
27.	Chilades laius	Lime Blue	
28.	Cirrochroa thais	Tamil Yeoman	E
29.	Cupha erymanthis	Rustic	
30.	Cynthia cardui	Painted Lady	
31.	Cyrestis thyodamas	Common Map	
32.	Delias eucharis	Common Jezebel	
33.	Discophora lepida	Southern Duffer	E
34.	Elymnias hypermenstra	Common Palmfly	
35.	Euchrysops cnejus	Gram Blue	
36.	Euploea core	Common Indian Crow	

37.	Euploea sylvester	Double-Branded Crow		
38.	Eurema blanda	Three-Spot Grass Yellow		
39.	Eurema hecabe	Common Grass Yellow		
40.	Euthalia aconthea	Common Baron		
41.	Everes lacturnus	Indian Cupid		
42.	Gangara thyrsis	Giant Redeye		
43.	Graphium agamemnon	Tailed Jay		
44.	Graphium doson	Common Jay		
45.	Graphium sarpedon	Common Bluebottle		
46.	Hasora taminatus	White Banded Awl		
47.	Hebomoia glaucippe	Great Orange Tip		
48.	Hypolimnas bolina	Great Eggfly		
49.	Hypolimnas misippus	Danaid Eggfly		
50.	lambrix salsala	Chestnut Bob		
51.	Idea malabarica	Malabar Tree Nymph	E	NE
52.	Jamides alecto	Metallic Cerulean		
53.	Jamides bochus Jamides	Dark Cerulean		
54.	Jamides celeno	Common Cerulean		
55.	Junonia almana	Peacock Pansy		
56.	Junonia iphita	Chocolate Pansy		
57.	Junonia lemonias	Lemon Pansy		
58.	Kaniska canace	Blue Admiral		
59.	Lampides boeticus	Pea Blue		
60.	Leptosia nina	Psyche		
61.	Lethe drypetis	Tamil Treebrown	Е	

62.	Limenitis procris	Commander	
	·		
63.	Loxura atymnus	Yamfly	
64.	Magisba malaya	Malayan	
65.	Matapa aria	Common Redeye	
66.	Melanitis leda	Common Evening Brown	
67.	Melanitis phedima	Dark Evening Brown	
68.	Melanitis zitenius	Great Evening Brown	
69.	Mycalesis anaxias	Whitebar Bushbrown	E
70.	Mycalesis perseus	Common Bushbrown	
71.	Mycalesis subdita	Tamil Bushbrown	E
72.	Mycalesis visala	Longbrand Bushbrown	
73.	Neptis hylas	Common Sailer	
74.	Neptis jumbah	Chestnut-Streaked Sailer	
75.	Notocrypta curvifascia	Restricted Demon	
76.	Notocrypta paralysos	Common Banded Demon	
77.	Oriens concinna	Tamil Dartlet	
78.	Oriens goloides	Indian/Common Dartlet	
79.	Pachliopta aristolochiae	Common Rose	
80.	Pachliopta pandiyana	Malabar Or Ceylon Rose	E
81.	Pantoporia hordonia	Common Lascar	
82.	Papilio demoleus	Lime	
83.	Papilio dravidarum	Malabar Raven	E
84.	Papilio helenus	Red Helen	
85.	Papilio leomedon	Malabar Banded Swallowtail	E
86.	Papilio polymnestor	Blue Mormon	

87.	Panilia nalutas	Common Mormon		
07.	Papilio polytes			
88.	Parantica aglea	Glassy Tiger		
89.	Parantica nilgiriensis	Nilgiri Tiger	Е	NT
90.	Parantirrhoea marshalli	Travancore Evening Brown	Е	
91.	Parthenos sylvia	Clipper		
92.	Pelopidas agna	Dark Branded Swift		
93.	Pelopidas mathias	Dark Small-Branded Swift		
94.	Pelopidas subochracea	Large Branded Swift		
95.	Phalanta phalantha	Common Leopard		
96.	Polytremis lubricans	Contiguous Swift		
97.	Polyura athamas	Common Nawab		
98.	Potanthus confucius	Confucian/Chinese Dart		
99.	Potanthus pava	Pava Dart		
100.	Potanthus psuedomaesa	Psuedomaesa/Common Dart		
101.	Prioneris sita	Painted Sawtooth		
102.	Prosotas nora	Common Line Blue		
103.	Psolos fuligo	Coon		
104.	Psuedozizeeria maha	Pale Grass Blue		
105.	Rapala manea	Slate Flash		
106.	Sovia hyrtacus	Bicolour Ace	E	
107.	Spalgis epius	Apefly		
108.	Spindasis elima	Scarce Shot Silverline		
109.	Spindasis schistacea	Plumbeous Silverline		
110.	Spindasis vulcanus Spindasis	Common Silverline		
101. 102. 103. 104. 105. 106. 107. 108. 109.	psuedomaesa Prioneris sita Prosotas nora Psolos fuligo Psuedozizeeria maha Rapala manea Sovia hyrtacus Spalgis epius Spindasis elima Spindasis schistacea Spindasis vulcanus	Painted Sawtooth Common Line Blue Coon Pale Grass Blue Slate Flash Bicolour Ace Apefly Scarce Shot Silverline Plumbeous Silverline	E	

111.	Suastus gremius	Indian Palm Bob		
112.	Suastus minuta	Small Palm Bob		
113.	Tagiades gana	Immaculate/Large/Suffused Snow Flat		
114.	Tagiades jepetus	Common/Ceylon Snow Flat		
115.	Tagiades litigiosa	Water Snow Flat		
116.	Taractrocera ceramas	Tamil Grass Dart		
117.	Telicota ancilla	Dark Palm Dart		
118.	Telicota colon	Pale Palm Dart		
119.	Thoressa astigmata	Southern Spotted Or Unbranded Ace	E	
120.	Thoressa sitala	Sitala Ace	Е	
121.	Tirumala limniace	Blue Tiger		
122.	Tirumala septentrionis	Dark Blue Tiger		
123.	Troides minos	Southern Birdwing		
124.	Udaspes folus	Grass Demon		
125.	Vindula erota	Cruiser		
126.	Ypthima baldus	Common Fivering		
127.	Ypthima ceylonica	White Or Ceylon Fourring		
128.	Ypthima huebneri	Common Fourring		
129.	Ypthima ypthimoides	Palni Fourring	E	
130.	Zipoetis saitis	Tamil Catseye	E	
131.	Zizeeria karsandra	Dark Grass Blue		
Total	131		21	2

Annexure 1(c)

List of scientific name, common name, endemism and RET status of amphibians in Ponmudi patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Bufo melanostictus			UV
2.	Euphlyctis cyanophlyctis			Nt
3.	Fejervarya keralensis	Kerala Warty Frog	E	Lc
4.	Fejervarya limnocharis	Common Pond Frog		Lc
5.	Gegeneophis sps		E	
6.	Hoplobatrachus tigerinus	Indian Bullfrog		VU
7.	Ichthyophis sps		Е	
8.	Indirana sps		Е	
9.	Micrixalus fuscus		E	NT
10.	Nyctibatrachus aliciae		E	Т
11.	Nyctibatrachus sps		E	
12.	Philautus akroparallagi		Е	
13.	Philautus anili		E	
14.	Philautus beddomii		Е	
15.	Philautus bobingeri		E	
16.	Philautus graminirupes		Е	
17.	Philautus ponmudi		E	
18.	Polypedates maculates	Himalayan Tree Frog		Lc
19.	Sylvirana temporalis		Е	
20.	Uraeotyphlus sps		Е	
Total	20		15	8

Annexure 1(d)

List of scientific name, common name, endemism and RET status of reptiles in Ponmudi patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Bungarus ceruleus	Common krait		
2.	Calotes calotes Green	Forest Lizard		Nt
3.	Calotes versicolor	Garden lizard		Nt
4.	Cnemapsis sps	Day Gecko		
5.	Draco dussumieri	Western Ghats Flying Lizard		
6.	Hemidactylus frenatus	Asian House Gecko		Lc
7.	Hypnale hypnale	Humpnosed pitviper	Е	
8.	Indotestudo travancorica	Travancore tortoise	Е	V
9.	Lycodon aulicus	Common Wolf snake		Lc
10.	Lycodon travancorius	Travancore Wolfsnake	E	Nt
11.	Mabuya sps	Travancore tortoise	E	
12.	Naja naja	Indian Cobra		
13.	Otocryptis beddomeii	Indian Kangaroo Lizard		VU
14.	Psammophilus dorsalis	South Indian Rock Agama		Nt
15.	Ptyas mucosa	Indian Rat Snake		Lc
16.	Sphenomorphus dussumieri	Dussumier's Litter Skink		
17.	Trimeresurus malabaricus	Malabar pitviper	Е	Nt
18.	Trimeresurus strigatus	Horse shope pitviper	E	Nt
19.	Varanus sps			
Total	19		6	11

Annexure 1(e)

List of scientific name, common name, endemism and RET status of Evergreen trees in Ponmudi patch.

S. No.	Botanical name	Local name	Family	Threatened status	Endemism
1	Aporosa cardiosperma	Vetti	Euphorbaceae	VU	
2	Artocarpus hirsutus	Anjil	Moraceae		Е
3	Bischofia javanica	Mlachethayan	Euphorbaceae		
4	Buchanania lanceolata	Kulamavu	Anacardiaceae		
5	Calophyllum inophyllum	Punna	Clusiacea	LC	
6	Canarium strictum	Thalli	Burseraceae		E
7	Carallia brachiata	Vallabham	Rhizophoraceae		
8	Cinnamomum malabatrum	Vayana	Lauraceae		Е
9	Cullenia exarillata	Vediplavue	Bombacaceae		
10	Diospyros paniculata	Karumaram	Ebenaceae		Е
11	Dysoxylum malabaricum	Akil	Meliaceae		Е
12	Elaeocarpus tuberculatus	Karamaram	Elaeocarpaceae		
13	Ficus religiosa	Arayal	Moraceae		
14	Garcinia gummi-gutta	Kodampuli	Clusiacea		
15	Gluta travancorica	Chenkurungi	Anacardaceae	NT	E
16	Hopea ponga	Kambakam	Dipteriocarpacea	EN	E
17	Hydnocarpus alpina	Vetti	Flaucortiaceae		
18	Knema attenuata	Chorappayin	Myristaceae	LC	E
19	Lagerstroemia speciosa	Poomaruthu	Lythraceae		
20	Lannea coromandelica	Uthi	Anacardiaceae		
21	Lophopetalum wightianum	Venkkotta	Celastraceae	LC	
22	Macaranga peltata	Vatta	Euphorbaceae		
23	Madhuca neriifolia	Attu-ilippa	Sapotaceae		

24	Mallotus tetracoccus	Thavittuvatta	Euphorbiaceae		
25	Mangifera indica	Mavu	Anacardacea		
26	Mastixia arborea ssp. arborea	Kunthirikkam	Cornaceae	LC	Е
27	Melia dubia	Malaveppu	Meliaceae		
28	Mesua thwaitesii	Nangu	Clusiaceae		
29	Myristica malabarica	Ponnambuvu	Myristicaceae		
30	Naringi crenulata	Kattunarakam	Rutaceae		
31	Olea dioica	Edana	Oleaceae		
32	Persea macrantha	Ooravu	Lauraceae		
33	Poeciloneuron indicum	Poothamkolli	Cluciaceae		Е
34	Psydrax dicoccos	Irumbarappan	Rubiaceae		
35	Schleichera oleosa	Poovanam	Sapindaceae		
36	Semecarpus auriculata	Charei	Anacardaceae	NT	E
37	Stereospermum colais var. colais	Pathiri	Bignonaceae		
38	Syzygium cumini	Njaval	Myrtaceae		
39	Terminalia bellirica	Thanni	Combretaceae		
40	Terminalia catappa	Badam	Combretaceae		
Total	40			8	11

Annexure 2 (a)

List of scientific name, common name, endemism and RET status of birds in Kallar patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Accipiter badius badius (Gmelin)	Shikra		Lc
2.	Accipiter virgatus besraJerdon	BesraSparrowHawk		Lc
3.	Acridotheres fuscus mahrattensis (Sykes)	Jungle Myna		Lc
4.	Acridotheres tristis tristis (Linnaeus)	Common Myna .		Lc
5.	Aegithiatiphia multioclor (Gmelin)	Commonlora		
6.	Alcedo atthis taporbana Kleinschmidt	SmallBlueKingfisher		
7.	Ardeola grayii grayii (Sykes)	Indian Pond Heron		Lc
8.	Artamus fuscus	AshyWoodswallow(Ashy Swallow-Shrike)		Lc
9.	Athene brama brama (Temminck)	SpottedOwlet		Lc
10.	Caprimulgus asiaticus asiaticus	Common Indian Nightjar		Lc
11.	Celius brachyurus jerdonii (Malherbe)	RufousWoodpecker		Lc
12.	Centropus sinensis parrotiStresemann	GreaterCoucal		Lc
13.	Chalcophaps indica indica (Linnaeus)	EmeraldDove		
14.	Chloropsis cochinchinensis jerdoni (Blyth)	Jerdon's Chloropsis		Lc
15.	Chrysocolaptes lucidus	Greater Golden-backed Woodpecker		Lc
16.	Collocalia unicolor (Jerdon)	IndianEdible-nestSwiftlet		Lc
17.	Columba livia intermedia Strickland	BlueRockPigeon		Lc
18.	Coracias benghalensis indica Linnaeus	IndianRoller		Lc
19.	Coracin amelanoptera sykesi	Black-headed Cuckooshrike		
20.	Corvus macrorhynchos culminatus	Jungle Crow		Lc

	Sykes			
21.	Corvus splendensprotegatus Madaras	HouseCrow		Lc
22.	Cuculus micropterus micropterus Gould	IndianCuckoo		Lc
23.	Cypsiurus balasiensi (J.E.Gray)	AsianPalmSwift		Lc
24.	Dendrocitta leucogastra	White-belliedTreepie ENDEMIC	Е	Lc
25.	Dendrocitta vagabundaparvula	Indian Treepie		Lc
26.	Dicaeum erythrorhynchos	Tickell's Flowerpecker		Lc
27.	Dicrurus paradiseusparadiseus	Greater Racket-tailed Drongo		Lc
28.	Dinopium benghalense	Lesser Golden-backed Woodpecker		Lc
29.	Eudynamys scolopacea scolopacea (Linnaeus)	AsianKoel		Lc
30.	Eurostopodus macrotis (Hume)	Great-EaredNightjar		Lc
31.	Falco tinnunculus tinnunculus Linnaeus	CommonKestrel		Lc
32.	Gallus sonneratii Temminck	GreyJunglefowl		Lc
33.	Glaucidium radiatum malabaricum (Blyth)	JungleOwlet		Lc
34.	Gracula indica (Cuvier)	SouthernHillMyna		
35.	Halcyon pileata (Boddaert)	Black-cappedKingfisher		Lc
36.	Halcyon smyrnensis fusca (Boddaert)	White-breastedKingfisher		Lc
37.	Haliastur indusindus (Boddaert)	BrahminyKite		Lc
38.	Harpactes fasciatus malabaricus (Gould)	MalabarTrogon		Lc
39.	Hemicircus canente canente (Lesson)	Heart-spottedWoodpecker		Lc
40.	Hemiprocne coronata (Tickell)	CrestedTreeSwift		Lc
41.	Hierococcyx varius varius Vahl	BrainfeverBird		
42.	Hirundapus gigantean indica	Brown-backed Needletail Swift.		Lc
43.	Hirundo daurica nipalensis	Red-rumpedSwallow (M)		Lc

Hodgson			
Hirundo emithii filfora Stonhone	Wire-tailedSwallow		Lc
			LU
Hypsipetes indicus indicus (Jerdon)	Yellow-browedBulbul		
Ictinaetus malayensis perniger (Hodgson)	BlackEagle		Lc
Irena puellapuella (Latham)	AsianFairyBlueBird		Lc
Lanius cristatus cristatus Linnaeus	BrownShrike		Lc
Loriculus vernali svernalis (Sparrman)	IndianHangingParrot		Lc
Megalaima haemacephala indica (Latham)	CoppersmithBarbet		Lc
Megalaima rubricapilla (Blyth)	Crimson-throated Barbet		Lc
Megalaima viridis (Boddaert)	White-cheekedBarbet		Lc
Merops leschenaultil Vieillot	Chestnut-headed Bee- eater		Lc
Merops philippinu sphilippinus Linnaeus	Blue-tailedBee-eater (M)		Lc
Milvus migransgovinda Sykes	BlackKite		Lc
Myiophonus horsfieldii horsfieldii	Malabar Whistling Thrush		
Nectarinia asiatica asiatica (Latham)	PurpleSunbird		Lc
Nectarinia minima (Sykes)	SmallSunbird ENDEMIC	E	Lc
Nectarinia zeylonica flaviventris	Purple-rumped Sunbird		Lc
Ninox scutulata hirsuta (Temminck)	BrownHawkOwl		Lc
Nycticorax nycticorax (Linnaeus)	Night Heron		Lc
Ocyceros griseus (Latham)	MalabarGreyHornbill ENDEMIC	Е	Lc
Otus bakkamoena bakkamoena Pennant	CollaredScopsOwl		Lc
Pericrocotus flammeus flammeus (Forster)	ScarletMinivet		Lc
Pernisptilo rhynchusruficollis Lesson	OrientalHoneyBuzzard		Lc
	Hirundo smithii filfera Stephens Hypsipetes indicus indicus (Jerdon) Ictinaetus malayensis perniger (Hodgson) Irena puellapuella (Latham) Lanius cristatus cristatus Linnaeus Loriculus vernali svernalis (Sparrman) Megalaima haemacephala indica (Latham) Megalaima rubricapilla (Blyth) Megalaima viridis (Boddaert) Merops leschenaultil Vieillot Merops philippinu sphilippinus Linnaeus Milvus migransgovinda Sykes Myiophonus horsfieldii horsfieldii Nectarinia asiatica asiatica (Latham) Nectarinia minima (Sykes) Nectarinia zeylonica flaviventris Ninox scutulata hirsuta (Temminck) Nycticorax nycticorax (Linnaeus) Ocyceros griseus (Latham) Otus bakkamoena bakkamoena Pennant Pericrocotus flammeus flammeus (Forster) Pernisptilo rhynchusruficollis	Hirundo smithii filfera Stephens Wire-tailedSwallow Hypsipetes indicus indicus (Jerdon) Ictinaetus malayensis perniger (Hodgson) Irena puellapuella (Latham) Lanius cristatus cristatus Linnaeus Loriculus vernali svernalis (Sparrman) Megalaima haemacephala indica (Latham) Megalaima viridis (Boddaert) Merops leschenaultil Vieillot Linnaeus Milvus migransgovinda Sykes Myiophonus horsfieldii horsfieldii Nectarinia asiatica asiatica (Latham) Nectarinia minima (Sykes) Nectarinia zeylonica flaviventris Ninox scutulata hirsuta (Temminck) Nycticorax nycticorax (Linnaeus) Pernisptilo rhynchusruficollis Pernisptilo rhynchusruficollis OrientalHoneyBuzzard	Hirundo smithii filfera Stephens Wire-tailedSwallow Hypsipetes indicus indicus (Jerdon) Ictinaetus malayensis perniger (Hodgson) Irena puellapuella (Latham) Lanius cristatus cristatus Linnaeus Loriculus vernali svernalis (Sparrman) Megalaima haemacephala indica (Latham) Megalaima rubricapilla (Blyth) Megalaima viridis (Boddaert) Menops philippinu sphilippinus Linnaeus Milvus migransgovinda Sykes Myiophonus horsfieldii horsfieldii Nectarinia asiatica asiatica (Latham) Nectarinia minima (Sykes) Ninox scutulata hirsuta (Temminck) Nyoticorax nycticorax (Linnaeus) OtypersmithBarbet CollaredScopsOwl Pernisptilo rhynchusruficolliis Viire-tailedSwallow HalackEagle (Hodgson) AsianFairyBlueBird BlackEagle (IndianHangingParrot CoppersmithBarbet CoppersmithBarbet CoppersmithBarbet Chestnut-headed Barbet Chestnut-headed Beeeater Blue-tailedBee-eater (M) Malabar Whistling Thrush Malabar Whistling Thrush PurpleSunbird ENDEMIC CollaredScopsOwl ENDEMIC CollaredScopsOwl Pernisptilo rhynchusruficolliis OrientalHoneyBuzzard

66.	Picumnus innominatus malayorum Hartert	SpeckledPiculet		Lc
67.	Pitta brachyuran brachyura (Linnaeus)	IndianPitta		Lc
68.	Pomatorhinus horsfieldii Harington	IndianScimitarBabbler		Lc
69.	Psittacula krameri manilensis(Bechstein)	Rose-ringedParakeet		Lc
70.	Pycnonotus cafer cafer (Linnaeus)	Red-ventedBulbul		Lc
71.	Pycnonotus jocosus fuscicaudatus (Gould)	Red-whiskeredBulbul		Lc
72.	Pycnonotus melanicterus gularis (Gould)	Ruby-throatedBulbul		Lc
73.	Spilornis cheelamelanotis (Jerdon)	CrestedSerpent-Eagle		Lc
74.	Sturnus malabaricus malabaricus (Gmelin)	Grey-headedStarling		Lc
75.	Treron bicincta bicincta (Jerdon)	Orange- breastedGreenPigeon		Lc
76.	Turdoides affinis affinis (Jerdon)	White-headedBabbler		
77.	Turdoides striatus malabaricus (Jerdon)	Jungle Babbler		Lc
78.	Tyto albastertens Hartert	BarnOwl		Lc
79.	Zoonavena sylvatica (Tickell)	White- rumpedNeedletailSwift		Lc
Total	79		3	70

Annexure 2 (b)

List of scientific name, common name, endemism and RET status of butterflies in Kallar patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Abisara echerius	Plum Judy		
2.	Acraea violae	Tawny Coster		
3.	Actolepis puspa	Common Hedge Blue		
4.	Aeromachus pygmaeus	Pygmy Grass-/Scrub- Hopper		
5.	Appias indra	Plain Puffin		
6.	Athyma nefte	Colour Sergeant		
7.	Athyma perius	Common Sergeant		
8.	Athyma ranga	Blackvein Sergeant		
9.	Badamia exclamationis	Brown Awl		
10.	Bibasis sena	Orangetail Awl		
11.	Caleta caleta	Angled Pierrot		
12.	Catopsilia pomona	Common Emigrant		
13.	Catopsilia pyranthe	Mottled Emigrant		
14.	Celaenorrhinus leucocera	Common Spotted Flat		
15.	Cepora nadina	Lesser Gull		
16.	Cepora nerissa	Common Gull		
17.	Cethosia nietneri	Tamil Lacewing		
18.	Charaxes bernardus	Tawny Rajah		
19.	Cheritra freja	Common Imperial		
20.	Chilades laius	Lime Blue		
21.	Cirrochroa thais	Tamil Yeoman	E	
22.	Cupha erymanthis	Rustic		

23.	Cyrestis thyodamas	Common Map		
24.	Delias eucharis	Common Jezebel		
25.	Discophora lepida	Southern Duffer	E	
26.	Elymnias hypermenstra	Common Palmfly		
27.	Euchrysops cnejus	Gram Blue		
28.	Euploea core	Common Indian Crow		
29.	Euploea sylvester	Double-Branded Crow		
30.	Eurema blanda	Three-Spot Grass Yellow		
31.	Eurema hecabe	Common Grass Yellow		
32.	Euthalia aconthea	Common Baron		
33.	Everes lacturnus	Indian Cupid		
34.	Gangara thyrsis	Giant Redeye		
35.	Graphium agamemnon	Tailed Jay		
36.	Graphium doson	Common Jay		
37.	Graphium sarpedon	Common Bluebottle		
38.	Hasora taminatus	White Banded Awl		
39.	Hebomoia glaucippe	Great Orange Tip		
40.	Hypolimnas bolina	Great Eggfly		
41.	Hypolimnas misippus	Danaid Eggfly		
42.	lambrix salsala	Chestnut Bob		
43.	Idea malabarica	Malabar Tree Nymph	Е	NE
44.	Jamides alecto	Metallic Cerulean		
45.	Jamides bochus Jamides	Dark Cerulean		
46.	Jamides celeno	Common Cerulean		
47.	Junonia almana	Peacock Pansy		
48.	Junonia iphita	Chocolate Pansy		
	•	·	0	

			T T	
49.	Junonia lemonias	Lemon Pansy		
50.	Kaniska canace	Blue Admiral		
51.	Lampides boeticus	Pea Blue		
52.	Leptosia nina	Psyche		
53.	Lethe drypetis	Tamil Treebrown	E	
54.	Limenitis procris	Commander		
55.	Loxura atymnus	Yamfly		
56.	Magisba malaya	Malayan		
57.	Matapa aria	Common Redeye		
58.	Melanitis leda	Common Evening Brown		
59.	Melanitis phedima	Dark Evening Brown		
60.	Melanitis zitenius	Great Evening Brown		
61.	Mycalesis perseus	Common Bushbrown		
62.	Mycalesis subdita	Tamil Bushbrown	E	
63.	Mycalesis visala	Longbrand Bushbrown		
64.	Neptis hylas	Common Sailer		
65.	Neptis jumbah	Chestnut-Streaked Sailer		
66.	Notocrypta curvifascia	Restricted Demon		
67.	Notocrypta paralysos	Common Banded Demon		
68.	Oriens goloides	Indian/Common Dartlet		
69.	Pachliopta aristolochiae	Common Rose		
70.	Pachliopta pandiyana	Malabar Or Ceylon Rose	E	
71.	Pantoporia hordonia	Common Lascar		
72.	Papilio demoleus	Lime		
73.	Papilio dravidarum	Malabar Raven	E	
74.	Papilio helenus	Red Helen		
	i .		·	

75.	Papilio polymnestor	Blue Mormon		
76.	Papilio polytes	Common Mormon		
77.	Parantica aglea	Glassy Tiger		
78.	Parantirrhoea marshalli	Travancore Evening Brown	E	
79.	Parthenos sylvia	Clipper		
80.	Pelopidas mathias	Dark Small-Branded Swift		
81.	Pelopidas subochracea	Large Branded Swift		
82.	Phalanta phalantha	Common Leopard		
83.	Polytremis lubricans	Contiguous Swift		
84.	Polyura athamas	Common Nawab		
85.	Potanthus pava	Pava Dart		
86.	Potanthus psuedomaesa	Psuedomaesa/Commo n Dart		
87.	Prosotas nora	Common Line Blue		
88.	Psolos fuligo	Coon		
89.	Psuedozizeeria maha	Pale Grass Blue		
90.	Rapala manea	Slate Flash		
91.	Sovia hyrtacus	Bicolour Ace	E	
92.	Spalgis epius	Apefly		
93.	Spindasis vulcanus Spindasis	Common Silverline		
94.	Suastus gremius	Indian Palm Bob		
95.	Suastus minuta	Small Palm Bob		
96.	Tagiades gana	Immaculate/Large/Suffu sed Snow Flat		
97.	Tagiades litigiosa	Water Snow Flat		
98.	Taractrocera ceramas	Tamil Grass Dart		
99.	Telicota ancilla	Dark Palm Dart		
100.	Telicota colon	Pale Palm Dart		

101.	Thoressa astigmata	Southern Spotted Or Unbranded Ace	E	
102.	Tirumala limniace	Blue Tiger		
103.	Tirumala septentrionis	Dark Blue Tiger		
104.	Troides minos	Southern Birdwing	E	
105.	Udaspes folus	Grass Demon		
106.	Vindula erota	Cruiser		
107.	Ypthima baldus	Common Fivering		
108.	Ypthima ceylonica	White Or Ceylon Fourring		
109.		Common Fourring		
	Zipoetis saitis	Tamil Catseye	E	
111.	Zizeeria karsandra	Dark Grass Blue		
Total	111		12	1

Annexure 2 (c)

List of scientific name, common name, endemism and RET status of amphibians in Kallar patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Bufo melanostictus			UV
2.	Euphlyctis cyanophlyctis			Nt
3.	Fejervarya keralensis		E	
4.	Fejervarya limnocharis			
5.	Hoplobatrachus tigerinus			VU
6.	Ichthyophis sps		E	
7.	Indirana sps		Е	
8.	Micrixalus fuscus		Е	Nt
9.	Nyctibatrachus sps		E	
10.	Philautus anili		Е	
11.	Polypedates maculates			Lc
12.	Sylvirana temporalis		E	
Total	12		7	5

Annexure 2 (d)

List of scientific name, common name, endemism and RET status of reptiles in Kallar patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Ahaetulla nasuta	Vine snake		
2.	Bungarus ceruleus	Common Krait		
3.	3. Calotes calotes Southern Green Calotes			Nt
4.			E	Nt
5.	Calotes versicolor	Garden Lizard		Nt
6.	Cnemapsis sps			
7.	Dendrelaphis tristis	Bronzed tree snake		Lc
8.	Draco dussumieri	Western Ghats Flying Lizard		
9.	Hypnale hypnale	Humpnosed pit viper	Е	
10.	Lycodon aulicus	Common wolf snake		Lc
11.	Lycodon travancorius	Travancore wolf snake	E	Nt
12.	Naja naja	Indian Cobra		
13.	Otocryptis beddomeii	Indian Kangaroo Lizard		VU
14.	Ptyas mucosa	Indian Rat Snake		Lc
15. Sphenomorphus dussumieri		Dussumier's Litter Skink		
16. Trimeresurus malabaricus		Malabar Pit viper	E	Nt
Total	16		4	9

Annexure 2 (e)

List of scientific name, common name, endemism and RET status of Evergreen trees in Kallar patch.

S. No.	Botanical name	Local name	Family	Threatened status	Endemism
1	Aporosa cardiosperma	Vetti	Euphorbaceae	VU	
2	Artocarpus hirsutus	Anjil	Moraceae		Е
3	Bischofia javanica	Mlachethayan	Euphorbaceae		
4	Buchanania lanceolata	Kulamavu	Anacardiaceae		
5	Calophyllum inophyllum	Punna	Clusiacea	LC	
6	Canarium strictum	Thalli	Burseraceae		E
7	Carallia brachiata	Vallabham	Rhizophoraceae		
8	Cinnamomum malabatrum	Vayana	Lauraceae		Е
9	Cullenia exarillata	Vediplavue	Bombacaceae		
10	Diospyros paniculata	Karumaram	Ebenaceae		E
11	Dysoxylum malabaricum	Akil	Meliaceae		E
12	Elaeocarpus tuberculatus	Karamaram	Elaeocarpaceae		
13	Ficus religiosa	Arayal	Moraceae		
14	Garcinia gummi-gutta	Kodampuli	Clusiacea		
15	Gluta travancorica	Chenkurungi	Anacardaceae	NT	Е
16	Hopea ponga	Kambakam	Dipteriocarpacea	EN	E
17	Hydnocarpus alpina	Vetti	Flaucortiaceae		
18	Knema attenuata	Chorappayin	Myristaceae	LC	E
19	Lagerstroemia speciosa	Poomaruthu	Lythraceae		
20	Lannea coromandelica	Uthi	Anacardiaceae		
21	Lophopetalum wightianum	Venkkotta	Celastraceae	LC	
22	Macaranga peltata	Vatta	Euphorbaceae		
23	Madhuca neriifolia	Attu-ilippa	Sapotaceae		

Total	40			8	11
40	Terminalia catappa	Badam	Combretaceae		
39	Terminalia bellirica	Thanni	Combretaceae		
38	Syzygium cumini	Njaval	Myrtaceae		
37	Stereospermum colais var. colais	Pathiri	Bignonaceae		
36	Semecarpus auriculata	Charei	Anacardaceae	NT	E
35	Schleichera oleosa	Poovanam	Sapindaceae		
34	Psydrax dicoccos	Irumbarappan	Rubiaceae		
33	Poeciloneuron indicum	Poothamkolli	Cluciaceae		E
32	Persea macrantha	Ooravu	Lauraceae		
31	Olea dioica	Edana	Oleaceae		
30	Naringi crenulata	Kattunarakam	Rutaceae		
29	Myristica malabarica	Ponnambuvu	Myristicaceae		
28	Mesua thwaitesii	Nangu	Clusiaceae		
27	Melia dubia	Malaveppu	Meliaceae		
26	Mastixia arborea ssp. arborea	Kunthirikkam	Cornaceae	LC	Е
25	Mangifera indica	Mavu	Anacardacea		
24	Mallotus tetracoccus	Thavittuvatta	Euphorbiaceae		

Annexure 3 (a)

List of scientific name, common name, endemism and RET status of birds in Chankili patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Accipiter badius badius Gmelin)	Shikra		Lc
2.	Accipiter virgatus besra Jerdon	BesraSparrowHawk		Lc
3.	Acridotheres fuscus mahrattensis (Sykes)	Jungle Myna		Lc
4.	Acridotheres tristis tristis (Linnaeus)	Common Myna .		Lc
5.	Aegithiatiphia multicolor (Gmelin)	Commonlora		
6.	Alcedo atthis taporbana Kleinschmidt	SmallBlueKingfisher		
7.	Artamus fuscus	AshyWoodswallow(Ashy Swallow- Shrike)		Lc
8.	Athene brama brama (Temminck)	Spotted Owlet .		Lc
9.	Buceros bicornis homrai Hodgson	GreatPiedHornbill		NT
10.	Centropus sinensis parroti Stresemann	GreaterCoucal		Lc
11.	Chalcophaps indica indica (Linnaeus)	EmeraldDove		
12.	Chloropsis aurifrons frontalis (Pelzeln)	Gold-frontedChloropsis		Lc
13.	Chloropsis cochinchinensis jerdoni (Blyth)	Jerdon's Chloropsis		Lc
14.	Chrysocolaptes lucidus	Greater Golden-backed Woodpecker		Lc
15.	Collocalia unicolor (Jerdon)	IndianEdible-nestSwiftlet		Lc
16.	Columba elphinstonii (Sykes)	NilgiriWoodPigeonENDEMIC	E	V
17.	Columba livia intermedia Strickland	BlueRockPigeon		Lc
18.	Coracin amelanoptera	Black-headed Cuckooshrike		

	sykesi			
19.	Corvus macrorhynchos culminatus Sykes	Jungle Crow	Lc	
20.	Corvus splendensprotegatus	MadarasHouseCrow	Lc	
21.	Cuculus micropterus micropterus Gould	IndianCuckoo (M)	Lc	
22.	Cypsiurus balasiensis (J.E.Gray)	AsianPalmSwift	Lc	
23.	Dendrocitta vagabundaparvula	Indian Treepie	Lc	
24.	24. Dicaeum erythrorhynchos Tickell's Flowerpecker		Lc	
25.	Dicrurus paradiseusparadiseus	Greater Racket-tailed Drongo	Lc	
26.	Dinopium benghalense	Lesser Golden-backed Woodpecker	Lc	
27.	Eudynamys scolopacea scolopacea (Linnaeus)	AsianKoel	Lc	
28.	Falco tinnunculus tinnunculus Linnaeus	CommonKestrel	Lc	
29.	Gallus sonneratii Temminck	GreyJunglefowl	Lc	
30.	Glaucidium radiatum malabaricum (Blyth)	JungleOwlet	Lc	
31.	Gracula indica (Cuvier)	SouthernHillMyna		
32.	Halcyon pileata (Boddaert)	Black-cappedKingfisher	Lc	
33.	Halcyon smyrnensis fusca (Boddaert)	White-breastedKingfisher	Lc	
34.	Haliastur indusindus (Boddaert)	BrahminyKite	Lc	
35.	Harpactes fasciatus malabaricus (Gould)	MalabarTrogon	Lc	
36.	Hemicircus canente canente (Lesson)	Heart-spottedWoodpecker	Lc	
37.	Hemiprocne coronata (Tickell)	CrestedTreeSwift	Lc	
38.	Hierococcyx varius varius	BrainfeverBird		

	Vahl			
39.	Hypsipetes indicus indicus (Jerdon)	Yellow-browedBulbul		
40.	Hypsipetes leucocephlus ganeesa (Sykes)	BlackBulbul		Lc
41.	Ictinaetus malayensis perniger (Hodgson)	BlackEagle		Lc
42.	Irena puellapuella (Latham)	AsianFairyBlueBird		Lc
43.	Ketupa zeylonensis leschenault (Temminck)	BrownFishOwl		Lc
44.	Lanius cristatus cristatus Linnaeus	BrownShrike		Lc
45.	Loriculus vernali svernalis (Sparrman)	IndianHangingParrot		Lc
46.	Megalaima haemacephala indica (Latham)	CoppersmithBarbet		Lc
47.	Megalaima rubricapilla (Blyth)	Crimson-throated Barbet		Lc
48.	Megalaima viridis (Boddaert)	White-cheekedBarbet		Lc
49.	Merops leschenaultil Vieillot	Chestnut-headed Bee-eater		Lc
50.	Merops philippinu sphilippinus Linnaeus	Blue-tailedBee-eater (M)		Lc
51.	Myiophonus horsfieldii horsfieldii	Malabar Whistling Thrush		
52.	Nectarinia asiatica asiatica (Latham)	PurpleSunbird		Lc
53.	Nectarinia minima (Sykes)	SmallSunbird ENDEMIC	Е	Lc
54.	Nectarinia zeylonica flaviventris	Purple-rumped Sunbird		Lc
55.	Ninox scutulata hirsuta (Temminck)	BrownHawkOwl		Lc
56.	Nyctyornis athertoni (Jardine&Selby)	Blue-bearded Bee-eater		Lc

57.	Ocyceros griseus (Latham)	MalabarGreyHornbill ENDEMIC	E	Lc
58.	Pericrocotus flammeus flammeus (Forster)	ScarletMinivet		Lc
59.	Picumnus innominatus malayorum Hartert	SpeckledPiculet		Lc
60.	Pitta brachyuran brachyura (Linnaeus)	IndianPitta		Lc
61.	Pomatorhinus horsfieldii Harington	IndianScimitarBabbler		Lc
62.	Psittacula krameri manilensis (Bechstein)	Rose-ringedParakeet		Lc
63.	Pycnonotus cafer cafer (Linnaeus)	Red-ventedBulbul		Lc
64.	Pycnonotus jocosus fuscicaudatus (Gould)	Red-whiskeredBulbul		Lc
65.	Pycnonotus melanicterus gularis (Gould)	Ruby-throatedBulbul		Lc
66.	Spilornis cheelamelanotis (Jerdon)	CrestedSerpent-Eagle		Lc
67.	Tachymarptis melbanubifuga Koelz	AlpineSwift		Lc
68.	Terpsiphone paradisi	Paradise flycatcher (M)		Lc
69.	Treron bicincta bicincta (Jerdon)	Orange-breastedGreenPigeon		Lc
70.	Turdoides affinis affinis (Jerdon)	White-headedBabbler		Lc
71.	Turdoides striatus malabaricus (Jerdon)	Jungle Babbler		Lc
72.	Zoonavena sylvatica (Tickell)	White-rumpedNeedletailSwift		Lc
Total	72		3	64

Annexure 3 (b)

List of scientific name, common name, endemism and RET status of butterflies in Chankili patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Abisara echerius	Plum Judy		
2.	Actolepis puspa	Common Hedge Blue		
3.	Aeromachus pygmaeus	Pygmy Grass-/Scrub-Hopper		
4.	Arnetta mercara	Coorg Forest Hopper	Е	
5.	Athyma nefte	Colour Sergeant		
6.	Athyma perius	Common Sergeant		
7.	Athyma ranga	Blackvein Sergeant		
8.	Badamia exclamationis	Brown Awl		
9.	Caleta caleta	Angled Pierrot		
10.	Catopsilia pomona	Common Emigrant		
11.	Catopsilia pyranthe	Mottled Emigrant		
12.	Celaenorrhinus leucocera	Common Spotted Flat		
13.	Celaenorrhinus ruficornis	Tamil Spotted Flat	E	
14.	Cepora nadina	Lesser Gull		
15.	Cepora nerissa	Common Gull		
16.	Cethosia nietneri	Tamil Lacewing		
17.	Cirrochroa thais	Tamil Yeoman	E	
18.	Cupha erymanthis	Rustic		
19.	Cyrestis thyodamas	Common Map		
20.	Delias eucharis	Common Jezebel		
21.	Elymnias hypermenstra	Common Palmfly		

-				
22.	Euchrysops cnejus	Gram Blue		
23.	Euploea core	Common Indian Crow		
24.	Euploea sylvester	Double-Branded Crow		
25.	Eurema blanda	Three-Spot Grass Yellow		
26.	Eurema hecabe	Common Grass Yellow		
27.	Everes lacturnus	Indian Cupid		
28.	Graphium onfucius	Tailed Jay		
29.	Graphium doson	Common Jay		
30.	Graphium sarpedon	Common Bluebottle		
31.	Hypolimnas bolina	Great Eggfly		
32.	Hypolimnas misippus	Danaid Eggfly		
33.	lambrix salsala	Chestnut Bob		
34.	Idea malabarica	Malabar Tree Nymph	E	NT
35.	Jamides alecto	Metallic Cerulean		
36.	Jamides celeno	Common Cerulean		
37.	Junonia iphita	Chocolate Pansy		
38.	Junonia lemonias	Lemon Pansy		
39.	Kaniska canace	Blue Admiral		
40.	Leptosia nina	Psyche		
41.	Lethe drypetis	Tamil Treebrown	E	
42.	Limenitis procris	Commander		
43.	Loxura atymnus	Yamfly		
44.	Matapa aria	Common Redeye		
45.	Melanitis leda	Common Evening Brown		
46.	Melanitis phedima	Dark Evening Brown		
47.	Melanitis zitenius	Great Evening Brown		
1	Ī			1

48.	Mysologis anaviss	Whitebar Bushbrown	E
40.	Mycalesis anaxias		_
49.	Mycalesis perseus	Common Bushbrown	
50.	Mycalesis subdita	Tamil Bushbrown	E
51.	Neptis hylas	Common Sailer	
52.	Neptis jumbah	Chestnut-Streaked Sailer	
53.	Notocrypta curvifascia	Restricted Demon	
54.	Notocrypta paralysos	Common Banded Demon	
55.	Oriens goloides	Indian/Common Dartlet	
56.	Pachliopta aristolochiae	Common Rose	
57.	Pachliopta pandiyana	Malabar Or Ceylon Rose	Е
58.	Pantoporia hordonia	Common Lascar	
59.	Papilio demoleus	Lime	
60.	Papilio dravidarum	Malabar Raven	E
61.	Papilio helenus	Red Helen	
62.	Papilio polymnestor	Blue Mormon	
63.	Papilio polytes	Common Mormon	
64.	Parantica aglea	Glassy Tiger	
65.	Parantirrhoea marshalli	Travancore Evening Brown	E
66.	Parthenos sylvia	Clipper	
67.	Pelopidas subochracea	Large Branded Swift	
68.	Phalanta phalantha	Common Leopard	
69.	Polytremis lubricans	Contiguous Swift	
70.	Polyura athamas	Common Nawab	
71.	Potanthus confucius	Confucian/Chinese Dart	
72.	Potanthus psuedomaesa	Psuedomaesa/Common Dart	
73.	Prioneris sita	Painted Sawtooth	

74.	Prosotas nora	Common Line Blue		
75.	Psolos fuligo	Coon		
76.	Spindasis vulcanus Spindasis	Common Silverline		
77.	Suastus gremius	Indian Palm Bob		
78.	Tagiades gana	Immaculate/Large/Suffused Snow Flat		
79.	Tagiades litigiosa	Water Snow Flat		
80.	Taractrocera ceramas	a ceramas Tamil Grass Dart		
81.	Tirumala limniace	Blue Tiger		
82.	Troides minos	Southern Birdwing	E	
83.	Udaspes folus	Grass Demon		
84.	Vindula erota	Cruiser		
85.	Ypthima ceylonica	White Or Ceylon Fourring		
86.	Ypthima huebneri	Common Fourring		
87.	Zipoetis saitis	Tamil Catseye	E	
88.	Zizeeria karsandra	karsandra Dark Grass Blue		
Total			12	1

Annexure 3 (c)

List of scientific name, common name, endemism and RET status of amphibians in Chankili patch.

S. No.	Scientific Name	Endemism	RET
1.	Bufo melanostictus		VU
2.	Fejervarya keralensis	Е	
3.	Fejervarya limnocharis		
4.	Hoplobatrachus tigerinus		VU
5.	Indirana brachytarsus	E	VU
6.	Indirana sps	E	
7.	Limnonectes nilagirica	E	EN
8.	Micrixalus fuscus	E	NT
9.	Philautus anili	E	
10.	Rana aurantiaca	Е	Nt
11.	Sylvirana temporalis	E	
Total	11	8	7

Annexure 3 (d)

List of scientific name, common name, endemism and RET status of reptiles in Chankili patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Calotes calotes	Green calotes		Nt
2.	Calotes versicolor	Garden lizard		Nt
3.	Cnemapsis sps	Day gecko		
4.	Dendrelaphis tristis	Bronzed tree snake		Lc
5.	Hypnale hypnale	Humpnosed pit viper	Е	
6.	Otocryptis beddomeii	Indian Kangaroo Lizard		VU
7.	Ptyas mucosa	Indian Rat Snake		Lc
8.	Sphenomorphus dussumieri	Dussumier's Litter Skink		
9.	Trimeresurus malabaricus	Malabar Pit viper	E	Nt
10.	Varanus sps	Monitor lizard		
Total	10		2	6

Annexure 3 (e)

List of scientific name, common name, endemism and RET status of evergreen trees in Chankili patch.

SI. No.	Botanical name	Local name	Family	Threatened status	Endemism
1	Aporosa cardiosperma	Vetti	Euphorbaceae	VU	
2	Artocarpus heterophylla	Plavu	Moraceae		E
3	Artocarpus hirsutus	Anjil	Moraceae		Е
4	Averrhoa carambola	Earnpuli	Oxalidaceae		
5	Baccaurea courtallensis	Mootikaya	Euphorbaceae		E
6	Bischofia javanica	Mlachethayan	Euphorbaceae		
7	Buchanania lanceolata	Kulamavu	Anacardiaceae		
8	Calophyllum inophyllum	Punna	Clusiacea	LC	
9	Calophyllum polyanthum	Malampunna	Clusiaceae		Е
10	Canarium strictum	Thelli	Burseraseae		Е
11	Carallia brachiata	Vallabham	Rhizophoraceae		
12	Chukrasia tabularis	Vellanangu	Meliaceae	LC	
13	Cinnamomum malabatrum	Vayana	Lauraceae		Е
14	Cullenia exarillata	Vediplavu	Bombacaceae		E
15	Dalbergia latifolia	Veeti	Fabaceae		
16	Diospyros buxifolia	Elichuzhi	Ebenaceae		
17	Diospyros paniculata	Karumaram	Ebenaceae		E
18	Diospyros pruriens	Illakkatta	Ebenaceae		
19	Dipterocarpus bourdillonii	Karanjili	Dipteriocarpace a		Е
20	Dysoxylum malabaricum	Akil	Meliaceae		Е
21	Elaeocarpus tuberculatus	Ammakarum	Eleocarpaceae		
22	Ficus religiosa	Arayal	Moraceae		
23	Ficus talbotii	Vellayal	Moraceae		
24	Garcinia gummi-gutta	Kodampuli	Clusiaceae		E
25	Gluta travancorica	Chenkurungi	Anacardaceae	NT	Е
26	Hopea ponga	Kambakam	Dipteriocarpace a	EN	Е
27	Hopea racophloea	Naikambagam	Dipteriocarpace ae		
28	Hydnocarpus alpina	Vetti	Flaucortiaceae		
29	Kingiodendron pinnatum	Kulavu	Caesalpinaceae		Е

	1	ı	T	T	1
30	Knema attenuata	Chorappayin	Myristaceae	LC	E
31	Lagerstroemia speciosa	Poomaruthu	Lythraceae		
32	Lannea coromandelica	Uthi	Anacardiaceae		
33	Lophopetalum wightianum	Venkkotta	Celastraceae	LC	
34	Macaranga peltata	Vatta	Euphobaceae		
35	Madhuca neriifolia	Attu-ilippa	Sapotaceae		
36	Mallotus tetracoccus	Thavittuvatta	Euphorbiaceae		
37	Mangifera indica	Mavu	Anacardacea		
38	Mastixia arborea ssp. arborea	Kunthirikkam	Cornaceae	LC	Е
39	Melia dubia	Malaveppu	Meliaceae		
40	Melicope lunu-ankenda	Kanala	Rutaceae		
41	Mesua ferrea var. ferrea	Eliponku	Clusiaceae		
42	Mesua thwaitesii	Nangu	Clusiaceae		
43	Myristica beddomei	Kothappayin	Myristicaeae		
44	Myristica malabarica	Ponnampayin	Myristicaceae	VU	Е
45	Naringi crenulata	Kattunarakam	Rutaceae		
46	Olea dioica	Edana	Oleaceae		
47	Otonephelium stipulaceum	Poripoovam	Sapindaceae		
48	Palaquium ravii	Pali	Sapotaceae		Е
49	Persea macrantha	Ooravu	Lauraceae		
50	Poeciloneuron indicum	Poothamkolli	Cluciaceae		Е
51	Polyalthia fragrans	Nedunar	Annonaceae		
52	Psydrax dicoccos	Irumbarappan	Rubiaceae		
53	Sapindus emarginatus	Soppinkaimar am	Sapindaceae		
54	Schleichera oleosa	Poovanam	Sapindaceae		
55	Schleichera oleosa	Poovanam	Sapindaceae		
55 56	Semecarpus auriculata	Poovanam Charei	Sapindaceae Anacardaceae	NT	E
				NT	E
56	Semecarpus auriculata Stereospermum colais	Charei	Anacardaceae	NT	E

CEPF – ATREE

59	Syzygium cumini	Njaval	Myrtaceae		
60	Terminalia bellirica	Thanni	Combretaceae	NT	
61	Terminalia catappa	Badam	Combretaceae		
62	Terminalia travancorensis	Peikkadukka	Combertaceae		
63	Vatica chinensis	Vellappayin	Dipteriocarpace ae		
64	Xanthophyllum arnottianum	Mottal	Polygalaceae		
Total	64			11	20

Annexure 4 (a)

List of scientific name, common name, endemism and RET status of birds in Achancovil patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Accipiter badius badius(Gmelin)	Shikra		Lc
2.	Accipiter virgatus besra Jerdon	Besra Sparrow Hawk		Lc
3.	Acridotheres fuscus mahrattensis (Sykes)	Jungle Myna		Lc
4.	Acridotheres tristis tristis (Linnaeus)	Common Myna		Lc
5.	Acrocephalus dumetorum Blyth.	Blyth's Reed-Warbler		Lc
6.	Aegithiatiphia multioclor (Gmelin)	Commonlora		
7.	Alcedo atthis taporbana	Kleinschmidt Small Blue Kingfisher		
8.	Alcippe poioicephala poioicephala (Jerdon)	Quaker Babbler		
9.	Anthus similis travancoriensis	Rock Pipit		
10.	Apsus affinis affinis (J.E.Gray)	House Swift		
11.	Arachnothera longirostris longirostris (Latham)	Little Spiderhunter		
12.	Ardeola grayii grayii (Sykes)	Indian Pond Heron		Lc
13.	Artamus fuscus Vieillot	Ashy Swallow-Shrike		Lc
14.	Athene brama brama (Temminck)	Spotted Owlet		Lc
15.	Cacomantis sonneratii sonneratii (Latham)	Banded Bay Cuckoo		Lc
16.	Carpodacus erythrinus roseatus (Blyth)	Common Rosefinch		Lc
17.	Celius brachyurus jerdoni (Malherbe)	Rufous Woodpecker		Lc
18.	Centropus sinensis	Greater Coucal		Lc
19.	Chalcophaps indica indica (Linnaeus)	Emerald Dove		
20.	Chloropsis aurifrons frontalis	Gold-fronted Chloropsis		Lc

	(Pelzeln)			
21.	Chloropsis cochinchinensis jerdoni (Blyth)	Jerdon's Chloropsis		Lc
22.	Collocalia unicolor (Jerdon)	Indian Edible-nest Swiftlet		Lc
23.	Columba livia intermedia	Strickland Blue Rock Pigeon		Lc
24.	Copsychus saularis ceylonensis Sclater	Oriental Magpie Robin		Lc
25.	Coracina melanoptera (Strickland)	Black-headed Cuckooshrike		
26.	Corvus macrorhynchos culminatus Sykes	Jungle Crow		Lc
27.	Corvus splendens protegatus	Madaras HouseCrow		Lc
28.	Dendrocitta leucogastra Gould	White-bellied Treepie	Е	Lc
29.	Dendrocitta vagabunda parvula Whistler&Kinnear	Indian Treepie		Lc
30.	Dicaeum concolor concolor Jerdon	Plain Flowerpecker		Lc
31.	Dicaeum erythrorhynchos (Latham)	Tickell's Flowerpecker		Lc
32.	Dicrurus aeneus aeneus Viellot	Bronzed Drongo		Lc
33.	Dicrurus macrocercus Viellot	Black Drongo		Lc
34.	Dicrurus paradiseus paradiseus (Linnaeus)	Racket-tailed Drongo		Lc
35.	Dinopium benghalense Lesser	Golden-backed Woodpecker		Lc
36.	Dinopium javanense	Golden-backed Woodpecker		Lc
37.	Egretta garzetta garzetta (Linnaeus)	Little Egret		Lc
38.	Eudynamys scolopacea scolopacea (Linnaeus)	Asian Koel		Lc
39.	Falco tinnunculus tinnunculus Linnaeus	Common Kestrel		Lc
40.	Gallus sonneratii Temminck	Grey Junglefowl		Lc
41.	Glaucidium radiatum malabaricum (Blyth)	Jungle Owlet		Lc

42.	Gracula indica (Cuvier)	Southern Hill Myna	
40	, , ,	-	
43.	Halcyon capensis capensis (Linnaeus)	Stork-billed Kingfisher	
44.	Halcyon smyrnensis fusca (Boddaert)	White-breasted Kingfisher	Lc
45.	Harpactes fasciatus malabaricus (Gould)	Malabar Trogon	Lc
46.	Hemicircus canente canente (Lesson)	Heart-spotted Woodpecker	Lc
47.	Hemiprocne coronata (Tickell)	Crested Tree-Swift	Lc
48.	Hieraaetus pennatus (Gmelin)	Booted Eagle	Lc
49.	Hierococcyx variusvarius Val	Brainfever Bird	
50.	Hippolaisca ligatarama (Sykes)	Booted Warbler	
51.	Hirundo concolor concolor Sykes	DuskyCrag-Martin	Lc
52.	Hirundo rustica gutturalis Scopoli	Common Swallow (M)	Lc
53.	Hypsipetes indicus indicus (Jerdon)	Yellow-browed Bulbul	
54.	Hypsipetes leucocephlus ganeesa (Sykes)	Black Bulbul	Lc
55.	Ictinaetus malayensi sperniger (Hodgson)	Black Eagle	Lc
56.	Irena puellapuella (Latham)	Asian Fairy BlueBird	Lc
57.	Lanius cristatus cristatus Linnaeus	Brown Shrike	Lc
58.	Loriculus vernalis vernalis (Sparrman)	Indian Hanging Parrot	Lc
59.	Megalaima haemacephala indica (Latham)	Coppersmith Barbet	Lc
60.	Megalaima rubricapilla (Blyth)	Crimson-throated Barbet	Lc
61.	Megalaima viridis(Boddaert)	White-cheeked Barbet	Lc
62.	Merops leschenaulti	Vieillot Chestnut- headed Bee-eater	Lc
63.	Merops philippinus philippinus Linnaeus	Blue-tailed Bee-eater (M)	Lc

64.	Milvus migrans govinda Sykes	Black Kite		Lc
65.	Motacilla cinerea cinerea (Tunstall)	GreyWagtail		Lc
66.	Motacilla indica Gmelin	ForestWagtail (M)		
67.	Muscicapa muttui muttui (Layard)	Brown-breasted Flycatcher (M)		Lc
68.	Muscicapala tirostris Raffles	Asian Brown Flycatcher		
69.	Myiophonus horsfieldii (Vigors)	Malabar Whistling Thrush		
70.	Nectarinia asiatica asiatica (Latham)	Purple Sunbird		Lc
71.	Nectarinia lotenia hindustanica (Whistler)	Loten'sSunbird		Lc
72.	Nectarinia minima (Sykes)	Small Sunbird	E	Lc
73.	Nectarinia zeylonica flaviventris (Hermann)	Purple-rumped Sunbird		Lc
74.	Ninox scutulata hirsute (Temminck)	Brown Hawk Owl		Lc
75.	Ocyceros griseus griseus (Latham)	Malabar GreyHornbill	Е	Lc
76.	Oriol usoriolus kundoo Sykes	Eurasian Golden Oriole		
77.	Parus majo rmahrattarum	Hartert GreatTit		
78.	Pavo cristatus Linnaeus	Common Peafowl		Lc
79.	Pellorneum ruficeps ruficeps	Swainson Spotted Babbler		Lc
80.	Pericrocotus cinnamomeus malabaricus (Gmelin)	Small Minivet		Lc
81.	Pericrocotus flammeus flammeus (Forster)	Scarlet Minivet		Lc
82.	Pernis ptilorhynchus ruficollis Lesson	Oriental Honey Buzzard		
83.	Pomatorhinus horsfieldii	Harington Indian Scimitar Babbler		Lc
84.	Psittacula krameri manilensis (Bechstein)	Rose-ringed Parakeet		Lc
85.	Pycnonotus jocosus fuscicaudatus (Gould)	Red-whiskered Bulbul		Lc

86.	Pycnonotus melanicterus gularis (G ould)	Ruby-throated Bulbul		Lc
87.	Rhopocichla atriceps atriceps (Jerdon)	Black-headed Babbler		Lc
88.	Spilornis chela melanotis (Jerdon)	Crested Serpent- Eagle		Lc
89.	Streptopelia chinensis suratensis (Gmelin)	Spotted Dove		Lc
90.	Sturnus malabaricus blythii (Jerdon)	Blyth's Starling		Lc
91.	Sturnus malabaricus malabaricus (Gmelin)	Grey-headed Starling		Lc
92.	Sturnus pagodarum (Gmelin)	Brahminy Starling		Lc
93.	Terpsiphone paradisi leucogaster (Swainson)	Paradise fly catcher (M)		Lc
94.	Threskiornis melanocephalus (Latham)	Oriental White Ibis		NT
95.	Turdoides striatus malabaricus (Jerdon)	Jungle Babbler		Lc
96.	Zoonavena sylvatica (Tickell)	White-rumped Needletail Swift		Lc
Total	96		3	75

Annexure 4 (b)

List of scientific name, common name, endemism and RET status of butterflies in Achancovil patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Acraea violae Fabricius	Tawny Coster		
2.	Actolepis puspa Horsfield	Common Hedge Blue		
3.	Amblypodia anita Hewitson	Leaf Blue		
4.	Anaphaeis aurota Fabricius	Pioneer or Caper white		
5.	Appias albina	Common Albatross		
6.	Appias indra Moore	Plain Puffin		
7.	Arhopala pseudocentaurus Doubleday	Western Centaur Oakblue		
8.	Ariadne merione Cramer	Common Castor		
9.	Athyma nefte Cramer	Color Sergeant		
10.	Athyma ranga Moore	Black vein Sergeant		
11.	Baoris farri Moore	Paintbrush Swift		
12.	Borbo cinnara Wallace	Rice Swift		
13.	Caleta caleta Hewitson	Angled Pierrot		
14.	Caprona agama Moore	Spotted Angle		
15.	Castalius rosimon Fabricius	Common Pierrot		
16.	Catopsilia pomona Fabricius	Common Emigrant		
17.	Cephrenes acalle	Hopffer Plain Palmdart		
18.	Cethosia nietneri C. & R. Felder	Tamil Lacewing		
19.	Charaxes bernardus Fabricius	Tawny Rajah		
20.	Cheritra freja Fabricius	Common Imperial		

21.	Chilades laius Stoll	Lime Blue	
22.	Chilades pandava Horsfield	Plains Cupid	
23.	Choaspes benjaminii Guerin-Meneville	Indian Awlking	
24.	Cirrochroa thais Fabricius	Tamil Yeoman	
25.	Coladenia indrani Moore	Tricolor Flat	
26.	Cupha erymanthis Drury	Rustic	
27.	Cyrestis thyodamas Boisduval	Common Map	
28.	Danaus chrysippus Linnaeus	Plain Tiger	
29.	Danaus genutia Cramer	Striped or Common tiger	
30.	Delias eucharis Drury	Common Jezebel	
31.	Deudorix epijarbas Moore	Cornelian	
32.	Euchrysops cnejus Fabricius	Gram Blue	
33.	Euploea core Stoll	Common Indian Crow	
34.	Euploea sylvester Fabricius	Double-Branded Crow	
35.	Eurema blanda Boisduval	Three-Spot Grass Yellow	
36.	Eurema hecabe Linnaeus	Common Grass Yellow	
37.	Euthalia nais Forster	Baronet	
38.	Everes lacturnus Godart	Indian cupid	
39.	Freyeria trochilus Kollar	Grass Jewel	
40.	Gangara thyrsis Fabricius	Giant Redeye	
41.	Graphium antiphates Cramer	Five-Bar Swordtail	
42.	Graphium doson C. & R. Felder	Common Jay	
43.	Graphium nomius Esper	Spot Swordtail	
44.	Graphium sarpedon	Common Bluebottle	

	Linnaeus		
45.	Halpe homolea Hewitson	Indian/Ceylon ace	
46.	Hasora chromus Cramer	Common Banded Awl	
47.	Hebomoia glaucippe Linnaeus	Great Orange Tip	
48.	Hypolimnas misippus Linnaeus	Danaid Eggfly	
49.	Hypolycaena othona Hewitson	Orchid Tit	
50.	lambrix salsala Moore	Chestnut Bob	
51.	Jamides alecto C.Felder	Metallic Cerulean	
52.	Jamides bochus Stoll	Dark Cerulean	
53.	Jamides celeno Cramer	Common Cerulean	
54.	Junonia atlites Linnaeus	Grey Pansy	
55.	Junonia hierta Fabricius	Yellow Pansy	
56.	Junonia iphita Cramer	Chocolate Pansy	
57.	Junonia lemonias Linnaeus	Lemon Pansy	
58.	Kaniska canace Linnaeus	Blue Admiral	
59.	Lampides boeticus Linnaeus	Pea Blue	
60.	Leptosia nina	Fabricius Psyche	
61.	Leptotes plinius Fabricius	Zebra Blue	
62.	Lethe europa Fabricius,	Bamboo Treebrown	
63.	Lethe rohria Fabricius	Common Treebrown	
64.	Matapa aria Moore	Common Redeye	
65.	Melanitis leda Linnaeus	Common Evening Brown	
66.	Melanitis phedima Stoll	Dark Evening Brown	
67.	Mycalesis patnia Moore	Gladeye Bushbrown	
68.	Mycalesis perseus Fabricius	Common Bushbrown	

69.	Mycalesis subdita Moore	Tamil Bushbrown	E	
70.	Nacaduba berenice Herrich-Schaffer	Rounded 6-Line Blue		
71.	Neptis hylas Linnaeus	Common Sailor		
72.	Neptis jumbah Moore	Chestnut-Streaked Sailor		
73.	Notocrypta paralysos W- M& deN Common	Banded Demon		
74.	Odontoptilum angulata C.Felder,	Chestnut/Banded Angle		
75.	Orsotrianea medus Fabricius	Medus Bushbrown		
76.	Pachliopta aristolochiae Fabricius	Common Rose		
77.	Pachliopta hector Linnaeus	Crimson Rose		
78.	Pachliopta pandiyana Moore	Malabar or Ceylon rose	E	
79.	Pantoporia hordonia Butler	Common Lascar		
80.	Papilio clytia Linnaeus	Common Mime		
81.	Papilio demoleus Linnaeus	Lime		
82.	Papilio helenus Linnaeus	Red Helen		
83.	Papilio polymnestor Cramer	Blue Mormon		
84.	Papilio polytes Linnaeus	Common Mormon		
85.	Parantica aglea Stoll	Glassy Tiger		
86.	Parantica nilgiriensis Moore	Nilgiri Tiger	E	NT
87.	Parantirrhoea marshalli WM	Travancore Evening Brown	E	
88.	Parthenos sylvia Cramer	Clipper		
89.	Petrelaea dana de Niceville	Dingy Line-blue		

90.	Phalanta phalantha Drury	Common Leopard		
91.	Polyura athamas Drury	Common Nawab		
92.	Prosotas nora C.Felder	Common Line Blue		
93.	Psolos fuligo Mabille	Coon		
94.	Psuedocoladenia dan Fabricius	Fulvous Pied Flat		
95.	Quedara basiflava de Niceville	Yellow-base/Golden Tree-flitter		
96.	Rapala manea Hewitson	Slate Flash		
97.	Rapala varuna Horsfield	Indigo Flash		
98.	Salanoemia sala Hewitson	Maculate Lancer		
99.	Sovia hyrtacus de Niceville	Bicolor Ace	Е	
100.	Spialia galba Fabricius	Indian grizzled/Indian skipper		
101.	Suastus gremius Fabricius	Indian Palm Bob		
102.	Suastus minuta Moore	Small Palm Bob		
103.	Tagiades litigiosa Moschler	Water Snow Flat		
104.	Talicada nyseus Guerin- Meneville	Red Pierrot		
105.	Tanaecia lepidea Butler	Grey Count		
106.	Taractrocera maevius Fabricius	Common Grass dart		
107.	Telicota ancilla Herrich-	Schaffer Dark Palmdart		
108.	Thaduka multicaudata Moore	Many-tailed Oakblue		
109.	Tirumala limniace Cramer	Blue Tiger		
110.	Tirumala septentrionis Butler	Dark Blue Tiger		
111.	Troides minos Cramer	Southern Birdwing	Е	
112.	Vindula erota Fabricius	Cruiser		

113.	Ypthima asterope Klug	Common Threering		
114.	Ypthima baldus Fabricius Common Fivering			
115.	Ypthima ceylonica Hewitson	White Fourring		
116.	Ypthima chenui Guerin- Meneville	Nilgiri Fourring	E	
117.	Ypthima huebneri Kirby	Common Fourring		
118.	Zeltus amasa Hewitson	Fluffy Tit		
119.	Zizina otis Fabricius,	Lesser Grass Blue		
120.	Zizula hylax Fabricius	Tiny Grass Blue		
Total			7	1

Annexure 4 (c)

List of scientific name, common name, endemism and RET status of abphibians in Achancovil patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Indirana brachytarsus		E	VU
2.	Limnonectes keralensis	Verrucose Frog		
3.	Limnonectes nilagirica		E	EN
4.	Nyctibatrachus sps	Wrinkled Frog	E	
5.	Philautus sps	Bush Frog	E	
6.	Rana aurantiaca		E	Nt
7.	Rana temporalis	Bronzed Frog		
Total	7		5	3

Annexure 4 (d)

List of scientific name, common name, endemism and RET status of reptiles in Achancovil patch.

S. No.	Scientific Name	Common Name	Endemism	RET
1.	Calotes calotes	Green Forest Lizard		Nt
2.	Cnemapsis sps	Day Gecko		
3.	Dendrelaphis grandoculis	Large-Eyed Bronzed Tree Snake	E	VU
4.	Draco dussumieri	Western Ghats Flying Lizard		
5.	Hemidactylus frenatus	Asian House Gecko		Lc
6.	Mabuya sps	Unidentified Skink		
7.	Melanochelys trijuga	Indian Black Turtle		Nt
8.	Naja naja	Indian Cobra		
9.	Otocryptis beddomeii	Indian Kangaroo Lizard		VU
10.	Psammophilus dorsalis	South Indian Rock Agama		Nt
11.	Ptyas mucosa	Indian Rat Snake		Lc
12.	Sphenomorphus dussumieri	Dussumier's Litter Skink		
Total	12		1	7

Annexure 4 (e)

List of scientific name, common name, endemism and RET status of Evergreen trees in Achancovil patchs

SI. No.	Botanical name	Local name	Family	Threatened status	Endemism
1	Aporosa cardiosperma	Vetti	Euphorbaceae		
2	Artocarpus heterophylla	Plavu	Moraceae		E
3	Artocarpus hirsutus	Anjil	Moraceae		Е
4	Atuna travancorica	Kallankaimaram	Chrysobalanaceae		E
5	Averrhoa carambola	Earnpuli	Oxalidaceae		
6	Baccaurea courtallensis	Mootikaya	Euphorbaceae		Е
7	Bischofia javanica	Mlachethayan	Euphorbaceae		
8	Buchanania lanceolata	Kulamavu	Anacardiaceae		
9	Calophyllum polyanthum	Malampunna	Clusiaceae		Е
10	Canarium strictum	Thelli	Burseraseae		E
11	Carallia brachiata	Vallabham	Rhizohporaceae		
12	Chukrasia tabularis	Vellanangu	Meliaceae	Lc	
13	Cinnamomum malabatrum	Vayana	Lauraceae		Е
14	Cullenia exarillata	Vediplavu	Bombacaceae		Е
15	Dalbergia latifolia	Veeti	Fabaceae		
16	Diospyros buxifolia	Elichuzhi	Ebenaceae		
17	Diospyros oocarpa	Karunkali	Ebenaceae		
18	Diospyros paniculata	Karumaram	Ebenaceae		Е
19	Diospyros pruriens	Illakkatta	Ebenaceae		
20	Dipterocarpus bourdillonii	Karanjili	Dipteriocarpacea	CR	E
21	Dysoxylum ficiforme	Akil	Meliaceae		Е
22	Elaeocarpus tuberculatus	Ammakarum	Eleocarpaceae		
23	Ficus religiosa	Arayal	Moraceae		
24	Ficus talbotii	Vellayal	Moraceae		
25	Garcinia gummi-gutta	Kodampuli	Clusiaceae		Е
26	Gluta travancorica	Chenkurinji	Anacardiaceae	Nt	E
27	Holigarna beddomei	Aanacheru	Anacardiaceae		
28	Hopea ponga	Kambakam	Dipteriocarpacea	EN	E

29	Hopea racophloea	Naikambagam	Dipteriocarpaceae		
30	Kingiodendron pinnatum	Kulavu	Caesalpinaceae		Е
31	Knema attenuata	Chorappayin	Myristicacea	LC	E
32	Knema attenuata	Chorappayin	Myristicacea	Lc	Е
33	Lagerstroemia speciosa	Poomaruthu	Lythraceae		
34	Lannea coromandelica	Uthi	Anacardiaceae		
36	Lophopetalum wightianum	Venkkotta	Celastraceae	Lc	
37	Macaranga peltata	Vatta	Euphobaceae		
38	Madhuca neriifolia	Attu-ilippa	Sapotaceae		
39	Mallotus tetracoccus	Thavittuvatta	Euphorbiaceae		
40	Mangifera indica	Mavu	Anacardacea		
41	Mastixia arborea ssp. arborea	Kunthirikkam	Cornaceae	Lc	E
42	Melia dubia	Malaveppu	Meliaceae		
43	Melicope lunu-ankenda	Kanala	Rutaceae		
44	Mesua ferrea var. ferrea	Eliponku	Clusiaceae		
45	Mesua thwaitesii	Kilinanku	Clusiaceae		
46	Myristica beddomei	Kothappayin	Myristicaeae		
47	Myristica malabarica	Ponnampayin	Myristicaceae	VU	E
48	Naringi crenulata	Kattunarakam	Rutaceae		
49	Olea dioica	Edana	Oleaceae		
50	Otonephelium stipulaceum	Poripoovam	Sapindaceae		
51	Palaquium ravii	Pali	Sapotaceae		Е
52	Persea macrantha	Ooravu	Lauraceae		
53	Poeciloneuron indicum	Poothamkolli	Cluciaceae		E
54	Polyalthia fragrans	Nedunar	Annonaceae		
55	Psydrax dicoccos	Irumbarappan	Rubiaceae		
56	Sapindus emarginatus	Soppinkaimaram	Sapindaceae		
57	Schleichera oleosa	Poovanam	Sapindaceae		
58	Semecarpus auriculata	Charei	Anacardaceae	NT	E
59	Stereospermum colais var. colais	Pathiri	Bignonaceae		
60	Stereospermum colais var. colais	Pathiri	Bignonaceae		

61	Strombosia ceylanica	Kalmanikkam	Olacaceae		
62	Syzygium cumini	Njaval	Myrtaceae		
63	Terminalia bellirica	Thanni	Combretaceae	NT	
64	Terminalia travancorensis	Peikkadukka	Combertaceae		
65	Vatica chinensis	Vellappayin	Dipteriocarpaceae	CR	
66	Vitex altissima	Myila	Verbanaceae		
67	Xanthophyllum arnottianum	Mottal	Polygalaceae		
Total	66			12	22